

Learn C# in 7 days

Get up and running with C# 7 with async main, tuples, pattern
matching, LINQ, regex, indexers, and more

Gaurav Aroraa

BIRMINGHAM - MUMBAI

Learn C# in 7 days
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2017

Production reference: 1041017

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78728-704-4

www.packtpub.com

http://www.packtpub.com

Credits

Author
Gaurav Aroraa

Copy Editor
Muktikant Garimella

Reviewer
Shivprasad Koirala

Project Coordinator
Ulhas Kambali

Commissioning Editor
Aaron Lazar

Proofreader
Safis Editing

Acquisition Editor
Denim Pinto

Indexer
Tejal Daruwale Soni

Content Development Editor
Vikas Tiwari

Graphics
Tania Dutta

Technical Editor
Diwakar Shukla

Production Coordinator
Nilesh Mohite

About the Author
Gaurav Aroraa has an M.Phil in computer science. He is a Microsoft MVP, certified as a
scrum trainer/coach, XEN for ITIL-F, and APMG for PRINCE-F and PRINCE-P. Gaurav
serves as a mentor at IndiaMentor and the webmaster of dotnetspider. He is also a
contributor to TechNet Wiki and a cofounder of Innatus Curo Software LLC. In the 19+
years of his career, he has mentored thousands of students and industry professionals. You
can reach Gaurav via his blog, LinkedIn, or Twitter (@g_arora).

I want to thank all who motivated me and allowed me to spend time on this book, time that
I was supposed to spend with them. My first thank you is to my wife, Shuby Arora, for her
support in all ways. Then, I would like to thank my little angel, Aarchi Arora. A great
thanks to my parents whose blessings are always with me; this is because of them. I would
like to thank the entire Packt team, especially Vikas Tiwari, Diwakar Shukla, and Denim
Pinto for their overnight support. A great thank you to Shivprasad Koirala for his in-depth
knowledge and his suggestions to improve various sections of the book.

About the Reviewer
Shivprasad Koirala is an X-Microsoft MVP, Microsoft trainer, and technical author. He has
written more than 80 books, and some of his bestsellers include .NET interview questions and
SQL Server interview questions. You can catch him mostly recording training videos athttp:/
/​www.​questpond.​com.

http://www.questpond.com/
http://www.questpond.com/
http://www.questpond.com/
http://www.questpond.com/
http://www.questpond.com/
http://www.questpond.com/
http://www.questpond.com/
http://www.questpond.com/

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com. Did
you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details. At www.PacktPub.com, you can also read a
collection of free technical articles, sign up for a range of free newsletters and receive
exclusive discounts and offers on Packt books and eBooks.

https:/​/​www.​packtpub.​com/​mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at "Amazon Book URL". If you'd like to join our team of regular reviewers, you can email us
at customerreviews@packtpub.com. We award our regular reviewers with free eBooks
and videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

Table of Contents
Preface 1

Chapter 1: Day 01 - Overview of the .NET Framework 6

What is programming? 6
What is .NET? 8
What is .NET Core? 9

.NET Core features 10
What makes .NET Core? 10
What is .NET Standard? 11
Available IDEs and editors for C# 11
Setting up the environment 12

Hands - on exercises 14
Revisiting Day 01 15

Chapter 2: Day 02 - Getting Started with C# 16

Introduction to C# 16
History of the C# language 17

Understanding a typical C# program 18
1 (System) 21
3 (Day02) 21
2 (Program) 22
4 (Main) 22
5 (Day02) 23
6 (Day02) 24
7 (Dependencies) 24
8 (Program.cs) 25
Deep-dive into application using Visual Studio 26
Discussing code 28

Color 29
Beep 30

An overview of C# reserved keywords, types, and operators 31
Identifiers 32
Contextual 43
Types 45

Value type 46
Data types 46

[ii]

Reference type 48
Pointer type 49
Null type 50

Operators 50
Discussing operator precedence in C# 55
Operator overloading 56

An overview of type conversion 59
Implicit conversion 59
Explicit conversion 59

Understanding statements 60
Declarative statement 62
Expression statement 62
Selection statement 62

The if statement 63
The if..else statement 64
if...else if...else statement 64
Nested if statement 65
Switch statement 66

Iteration statement 67
The do...while loop 67
The while loop 68
The for loop 68
The foreach loop 69

The jump statement 70
break 70
continue 70
default 71

Exception-handling statement 71
Arrays and string manipulations 71

Arrays 71
Types of arrays 74

Single-dimensional array 74
Multidimensional array 74
Jagged array 75

Strings 76
Structure versus class 78
Hands-on exercise 81
Revisiting day 2 83

Chapter 3: Day 03 - What's New in C# 84

Tuples and deconstruction 84
Tuples 84

The System.ValueTuple struct 86
Deconstruction 89

[iii]

Tuple – important points to remember 91
Pattern matching 92

is expression 93
switch statement 96

constant pattern 96
type pattern 98
When clause in case expression 98

Local functions 99
Literal improvements 100

Binary literals 101
Digit separator 101

Async Main 102
Restrictions while using new signatures 103

Default expressions 103
Member variables 105

Constants 105
Infer tuple names 105
Other features supposed to release 108

Pattern-matching with generics 108
Reference assemblies 108

Hands-on exercises 108
Revisiting Day 03 109

Chapter 4: Day 04 - Discussing C# Class Members 111

Modifiers 113
Access modifiers and accessibility levels 113

public 113
protected 115
internal 117
composite 118
private 120

Rules for the access modifier 122
abstract 123

Rules of the abstract modifier 125
async 128
const 128
event 129
extern 129
new 130
override 131
partial 131
readonly 131

[iv]

sealed 133
static 135

Rules for the static modifier 135
unsafe 137
virtual 137

Methods 137
How to use a method? 138

Properties 141
Types of properties 142

Read-write property 142
Read-only property 143
Computed property 144

Block-bodied members 144
Expression-bodied members 144

Property using validation 145
Indexers 146
File I/O 147

FileStream 148
Exception handling 149

try block 150
catch block 150
finally block 151

Different compiler-generated exceptions in catch block 152
User-defined exceptions 152

Discussing a regular expression and its importance 154
The Importance of a regular expression 155

Flexible 155
Constructs 155
Special characters 155

The period sign (.) 155
The word sign (w) 155
The space sign (s) 155
The digit sign (d) 155
The hyphen sign (-) 156
Specifying the number of matches 156

Hands-on exercise 158
Revisiting Day 04 159

Chapter 5: Day 05 - Overview of Reflection and Collections 160

What is reflection? 160
Reflection in use 164

Getting type info 164
Overview of delegates and events 169

[v]

Delegates 169
Declaring a delegate type 170
Instances of delegate 171
Delegates in use 171

Events 172
Declaring an event 173

Collections and non-generics 174
ArrayList 174

Declaration of ArrayList 175
Properties 175
Methods 176

HashTable 177
Declaration of HashTable 177

Properties 178
Methods 179

SortedList 180
Declaration of SortedList 180

Properties 181
Methods 182

Stack 184
Declaration of Stack 184

Properties 184
Methods 184

Queue 187
Declaration of Queue 187

Properties 187
Methods 187

BitArray 190
Hands - on exercise 190
Revisiting Day 05 191

Chapter 6: Day 06 - Deep Dive with Advanced Concepts 192

Playing with collections and generics 192
Understanding collection classes and their usage 193
Performance - BitArray versus boolArray 195
Understanding generics and their usage 196

Collections and generics 198
Why should we use generics? 200
Discussing constraints 203

The value type 205
The reference type 205
The default constructor 206
The base class constraint 207
The interface constraint 208

Beautifying code using attributes 209

[vi]

Types of attributes 210
AttributeUsage 210
Obsolete 211
Conditional 213

Creating and implementing a custom attribute 214
Prerequisites 214

Leveraging preprocessor directives 216
Important points 216

Preprocessor directives in action 216
Getting started with LINQ 222
Writing unsafe code 223
Writing asynchronous code 225
Hands-on exercises 226
Revisiting Day 6 227

Chapter 7: Day 07 - Understanding Object-Oriented Programming with
C# 228

Introduction to OOP 228
Discussing Object relations 230
Inheritance 231

Understanding inheritance 231
Types of inheritance 232
Member visibility in inheritance 237

Implementing inheritance 242
Implementing multiple inheritance in C# 245

Abstraction 248
Implementing abstraction 248

Abstract class 248
Features of abstract class 248

Interface 249
Features of interface 249

Encapsulation 252
What are access modifier in C#? 252
Implementing encapsulation 253

Polymorphism 255
Types of polymorphism 255
Implementing polymorphism 260

Hands on Exercise 262
Revisiting Day 7 263
What next? 264

Chapter 8: Day 08 - Test Your Skills – Build a Real-World Application 265

[vii]

Why are we developing this application? 266
Getting started with application development 266

Prerequisites 267
The database design 267

Overview 267
Discussing the basic architecture 272
Revisiting day 08 273

Index 274

Preface
Learning a new language or switching to an entirely different technology is a common
industry demand. As a student one should prepare oneself to be up to date with market
trends, and as a professional, one should be aware of the new things that are coming in with
new technologies. To meet this demand, there are a lot of books that are of thousand pages
long and aim to be comprehensive references to the C# programming language.
This book is entirely different and written so that someone who has a very basic knowledge
of the C# language, or is a professional and working with another language but wants to
switch, can learn C#. This book was designed with the aim that one should start with the
basics and progress to an advanced level. The book contains concise content with relevant
examples to explain everything.
There are a lot of sections in the book that will encourage you to learn more ; with this
knowledge, you can impress your colleagues, employers, or batch-mates. There will be a
few terms you will hear first time – no problem, you can learn about them in this book.
At the end of every section you will find a hands-on exercise section that will build
confidence and give you ideas for solving practical problems. You can find various hints in
these exercises.
For the code examples, you can go to the GitHub repository (https:/ ​/​github. ​com/
PacktPublishing/​Learn- ​CSharp- ​in- ​7- ​days/ ​) and download the source code for all
chapters. You can easily use these code example in Visual Studio 2017 Update 3 by
following the instructions mentioned thereon.

What this book covers
Chapter 1, Day 01 - Overview of the .NET Framework, gets you familiar with C#, including
.NET Framework and .NET Core.

Chapter 2,Day 02 - Getting Started with C#, gives you a basic understanding of C# by
iterating through the type system and the use of various constructs. The use and importance
of reserved keywords, understanding statements, type conversions.

Chapter 3, Day 03 - What's New in C#, gets you familiar with various new important
features introduced in versions 7.0 and 7.1.

Chapter 4,Day 04 - Discussing C# Class Members, explains the fundamentals of class and its
members will be explained including indexers, the filesystem, exception handling, and
string manipulation with regular expressions.

https://github.com/PacktPublishing/Learn-CSharp-in-7-days/
https://github.com/PacktPublishing/Learn-CSharp-in-7-days/
https://github.com/PacktPublishing/Learn-CSharp-in-7-days/
https://github.com/PacktPublishing/Learn-CSharp-in-7-days/
https://github.com/PacktPublishing/Learn-CSharp-in-7-days/
https://github.com/PacktPublishing/Learn-CSharp-in-7-days/
https://github.com/PacktPublishing/Learn-CSharp-in-7-days/
https://github.com/PacktPublishing/Learn-CSharp-in-7-days/
https://github.com/PacktPublishing/Learn-CSharp-in-7-days/
https://github.com/PacktPublishing/Learn-CSharp-in-7-days/
https://github.com/PacktPublishing/Learn-CSharp-in-7-days/
https://github.com/PacktPublishing/Learn-CSharp-in-7-days/
https://github.com/PacktPublishing/Learn-CSharp-in-7-days/
https://github.com/PacktPublishing/Learn-CSharp-in-7-days/
https://github.com/PacktPublishing/Learn-CSharp-in-7-days/
https://github.com/PacktPublishing/Learn-CSharp-in-7-days/
https://github.com/PacktPublishing/Learn-CSharp-in-7-days/
https://github.com/PacktPublishing/Learn-CSharp-in-7-days/
https://github.com/PacktPublishing/Learn-CSharp-in-7-days/

Preface

[2]

Chapter 5, Day 05 - Overview of Reflection and Collections, covers working with code using
reflection, and an introduction to collections, delegates, and events.

Chapter 6, Day 06 - Deep Dive with Advanced Concepts, teaches you about implementing
attributes, using preprocessors, and understanding generics and their usage, including sync
and async programming.

Chapter 7, Day 07 - Understanding Object-Oriented Programming with
C#, In this chapter we will learn all 4-paradigm of oop and implement using C# 7.0.

Chapter 8, Day 08 - Test Your Skills – Build a Real-World Application, helps you to write a
complete application with the help of what you learned from this book.

What you need for this book
All supporting code samples in this book have been tested on .NET Core 2.0 using Visual
Studio 2017 update 3, database using SQL Server 2008R2 or later on the Windows platform.

Who this book is for
Learn C# in 7 Days is a fast-paced guide. In this book, we take a unique approach to teaching
C# to an absolute beginner, who will be able to learn the basics of the language in seven
days. This practical book comes with important concepts that introduce the foundation of
the C# programming language. This book addresses the challenges and issues that most
beginners face. It covers issues such as the need to learn C#, issues with setting up a
development environment with C#, challenges such as mathematical operations, and other
day-to-day problems. Its fast-paced writing style allows the reader to get up and running in
no time. We begin with the absolute basics in the first chapter (variables, syntax, control
flows, and so on), and then move on to concepts such as statements, arrays, string
processing, methods, inheritance, I/O handling, and so on. Every chapter is followed by an
exercise that focuses on building something with the language. This book is a fast-paced
guide to get readers upto speed with the language. It works as a reference guide, describing
the major features of C#. Readers will be able to build easy and simple code with real-world
scenarios. By the end of this book, you will be able to take your skills to the next level, with
a good knowledge of the fundamentals of C#.

Preface

[3]

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.
Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "You will
get the following code in the Program.cs class. This is the default code provided by Visual
Studio; you can amend it as you need." A block of code is set as follows:

var class1 = newClassExample();
var class2 = new Day02New.ClassExample();
 class1.Display();
 class2.Display();

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "From Workloads, select the
options you want to install. For our book, we need .NET desktop development and .NET
Core."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply email
feedback@packtpub.com, and mention the book's title in the subject of your message. If
there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

http://www.packtpub.com/authors

Preface

[4]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at http:/ ​/​www.
packtpub.​com. If you purchased this book elsewhere, you can visit http:/ ​/​www. ​packtpub.
com/​support and register to have the files emailed directly to you. You can download the
code files by following these steps:

Log in or register to our website using your email address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​Learn- ​CSharp- ​in- ​7- ​Days. We also have other code bundles from our
rich catalog of books and videos available at https:/ ​/​github. ​com/ ​PacktPublishing/ ​.
Check them out!

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Learn-CSharp-in-7-Days
https://github.com/PacktPublishing/Learn-CSharp-in-7-Days
https://github.com/PacktPublishing/Learn-CSharp-in-7-Days
https://github.com/PacktPublishing/Learn-CSharp-in-7-Days
https://github.com/PacktPublishing/Learn-CSharp-in-7-Days
https://github.com/PacktPublishing/Learn-CSharp-in-7-Days
https://github.com/PacktPublishing/Learn-CSharp-in-7-Days
https://github.com/PacktPublishing/Learn-CSharp-in-7-Days
https://github.com/PacktPublishing/Learn-CSharp-in-7-Days
https://github.com/PacktPublishing/Learn-CSharp-in-7-Days
https://github.com/PacktPublishing/Learn-CSharp-in-7-Days
https://github.com/PacktPublishing/Learn-CSharp-in-7-Days
https://github.com/PacktPublishing/Learn-CSharp-in-7-Days
https://github.com/PacktPublishing/Learn-CSharp-in-7-Days
https://github.com/PacktPublishing/Learn-CSharp-in-7-Days
https://github.com/PacktPublishing/Learn-CSharp-in-7-Days
https://github.com/PacktPublishing/Learn-CSharp-in-7-Days
https://github.com/PacktPublishing/Learn-CSharp-in-7-Days
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http:/ ​/​www. ​packtpub. ​com/ ​submit- ​errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title. To view the previously submitted errata, go to https:/ ​/​www. ​packtpub. ​com/
books/​content/​support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the internet, please provide us with
the location address or website name immediately so that we can pursue a remedy. Please
contact us at copyright@packtpub.com with a link to the suspected pirated material. We
appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1
Day 01 - Overview of the .NET

Framework
This is Day 01 of our seven day journey to learn C#. Today, we will begin with an
introduction of a new world of programming and will discuss all the basic concepts
required to learn this programming language. We will also discuss the .NET Framework
and the .NET Core framework by covering important concepts of the framework. We will
also get a basic understanding of managed and unmanaged code. At the end of the day, we
will start with a simple Hello World program.

Today, we will learn the following topics:

What is programming?
What is .NET Core?
What is .NET standard?

What is programming?
There might be various definitions or various thoughts to define the word programming. In
my view, programming is writing a solution in such a way that a machine (computer) can
understand to depict the solution, which you can identify manually.

For example, let’s say you have a problem statement: find the total count of vowels from this
book. If you want to find the solution to this statement, what will you do?

Day 01 - Overview of the .NET Framework

[7]

The probable steps for the solution to this problem are as follows:

First, get the right book. I am assuming that you know the vowels (a, e, i, o, and1.
u).

How many vowels did you find in a book?--0 (zero).2.
Open the current page (initially, our current page is 1) and start reading to find3.
vowels.
If the letter matches a, e, i, o, or u (please note that the case doesn’t matter, so the4.
letters might as well be A, E, I, O, and U), then increase the vowel count by one.
Is the current page completed?5.
If the answer of step 5 is yes, then check if this is the last page of the book:6.

If yes, then we have the total vowel count in hand, which is nothing
but n, where n is the total number of vowels found in the current
chapter. Move to step 8 for the result.
If this is not the last chapter, move to the next chapter by adding 1 to
the current chapter number. So, we should move to 1 + 1 = 2 (Chapter
2).

In the next chapter, repeat steps 4 to 6 and until you reach the last chapter of the7.
book.
Finally, we have the total vowel count, that is, n (n is the total number of vowels8.
found).

The preceding steps just described how we reached a perfect solution for our problem
statement. These steps showed how we manually found the answer to our problem of
counting all the vowels in the book's chapters.

In the programming world, such steps are collectively known as an algorithm.

An algorithm is nothing but a process to solve a problem by defining a set
of rules.

When we write the preceding step(s)/algorithm in such a way that a machine/computer will
be able to follow the instructions, it is called programming. These instructions should be
written in a language understood by the machine/computer, and this is what is called a
programming language.

Day 01 - Overview of the .NET Framework

[8]

In this book, we will use C# 7.0 as the programming language and .NET Core as the
framework.

What is .NET?
While we are referring to .NET (pronounced as dot NET), it is .NET Full, as we have .NET
Core in place and we are using .NET Core in our book examples with C# 7.0 as the
language. Before moving ahead, you should know about .NET because there is a .NET
Standard available with the .NET Core, that is API servers for both .NET Framework as well
.NET Core. So, if you created a project using .NET Standard it is valid for both .NET
Framework and .NET Core.

.NET is nothing but a combination of languages, runtime, and libraries, by using which we
can develop managed software/applications. The software written in .NET is managed or is
in a managed environment. To understand managed, we need to dig into how binary
executables are available for operating systems. This comprises three broader steps:

Writing the code (source code).1.
Compiler compiles the source code.2.
The operating system executes the binary executable immediately:3.

Broader steps – how binary executable is available?

Day 01 - Overview of the .NET Framework

[9]

The preceding process is a standard process depicting how compilers compile the source
code and create executable binaries, but in the case of .NET, the compiler (C# compiler for
our code) does not directly provide a binary executable; it provides an assembly and this
assembly consists of metadata and intermediate language code, also known as Microsoft
Intermediate Language (MSIL) or Intermediate Language (IL). This MSIL is a high-level
language and this can’t be understood directly by the machine, as MSIL is not machine-
specific code or byte code. For proper execution, it should be interpreted. This
interpretation from MSIL or IL to the machine language happens with the help of JIT. In
other words, JIT compiles MSIL, IL into the machine language, also called native code. For
more information, refer to https:/ ​/ ​msdn. ​microsoft. ​com/ ​en- ​us/​library/ ​ht8ecch6(v= ​vs.
90).​aspx.

For 64-bit compilation, Microsoft has announced RyuJIT (https:/ ​/​blogs. ​msdn. ​microsoft.
com/​dotnet/​2014/ ​02/ ​27/ ​ryujit- ​ctp2- ​getting- ​ready- ​for- ​prime- ​time/ ​). In the coming
versions, 32-bit compilation will also be handled by RyuJIT (https:/ ​/​github. ​com/ ​dotnet/
announcements/​issues/ ​10). After this, we can now have a single code base for both
CoreCLR.

Intermediate language is a high-level component-based assembly
language.

In our seven days of learning, we will not focus on the framework, but we will be more
focused on the C# language with the use of .NET Core. In the coming sections, we will
discuss important things of .NET Core in such a way that while we work with a C#
program, we should understand how our program talks with the operating system.

What is .NET Core?
.NET Core is a new general-purpose development environment introduced by Microsoft to
meet cross-platform requirements. .NET Core supports Windows, Linux, and OSX.

.NET Core is an open source software development framework released under MIT License
and maintained by the Microsoft and .NET community on the GitHub (https:/ ​/​github.
com/​dotnet/​core) repository.

https://msdn.microsoft.com/en-us/library/ht8ecch6(v=vs.90).aspx
https://msdn.microsoft.com/en-us/library/ht8ecch6(v=vs.90).aspx
https://msdn.microsoft.com/en-us/library/ht8ecch6(v=vs.90).aspx
https://msdn.microsoft.com/en-us/library/ht8ecch6(v=vs.90).aspx
https://msdn.microsoft.com/en-us/library/ht8ecch6(v=vs.90).aspx
https://msdn.microsoft.com/en-us/library/ht8ecch6(v=vs.90).aspx
https://msdn.microsoft.com/en-us/library/ht8ecch6(v=vs.90).aspx
https://msdn.microsoft.com/en-us/library/ht8ecch6(v=vs.90).aspx
https://msdn.microsoft.com/en-us/library/ht8ecch6(v=vs.90).aspx
https://msdn.microsoft.com/en-us/library/ht8ecch6(v=vs.90).aspx
https://msdn.microsoft.com/en-us/library/ht8ecch6(v=vs.90).aspx
https://msdn.microsoft.com/en-us/library/ht8ecch6(v=vs.90).aspx
https://msdn.microsoft.com/en-us/library/ht8ecch6(v=vs.90).aspx
https://msdn.microsoft.com/en-us/library/ht8ecch6(v=vs.90).aspx
https://msdn.microsoft.com/en-us/library/ht8ecch6(v=vs.90).aspx
https://msdn.microsoft.com/en-us/library/ht8ecch6(v=vs.90).aspx
https://msdn.microsoft.com/en-us/library/ht8ecch6(v=vs.90).aspx
https://msdn.microsoft.com/en-us/library/ht8ecch6(v=vs.90).aspx
https://msdn.microsoft.com/en-us/library/ht8ecch6(v=vs.90).aspx
https://msdn.microsoft.com/en-us/library/ht8ecch6(v=vs.90).aspx
https://msdn.microsoft.com/en-us/library/ht8ecch6(v=vs.90).aspx
https://msdn.microsoft.com/en-us/library/ht8ecch6(v=vs.90).aspx
https://blogs.msdn.microsoft.com/dotnet/2014/02/27/ryujit-ctp2-getting-ready-for-prime-time/
https://blogs.msdn.microsoft.com/dotnet/2014/02/27/ryujit-ctp2-getting-ready-for-prime-time/
https://blogs.msdn.microsoft.com/dotnet/2014/02/27/ryujit-ctp2-getting-ready-for-prime-time/
https://blogs.msdn.microsoft.com/dotnet/2014/02/27/ryujit-ctp2-getting-ready-for-prime-time/
https://blogs.msdn.microsoft.com/dotnet/2014/02/27/ryujit-ctp2-getting-ready-for-prime-time/
https://blogs.msdn.microsoft.com/dotnet/2014/02/27/ryujit-ctp2-getting-ready-for-prime-time/
https://blogs.msdn.microsoft.com/dotnet/2014/02/27/ryujit-ctp2-getting-ready-for-prime-time/
https://blogs.msdn.microsoft.com/dotnet/2014/02/27/ryujit-ctp2-getting-ready-for-prime-time/
https://blogs.msdn.microsoft.com/dotnet/2014/02/27/ryujit-ctp2-getting-ready-for-prime-time/
https://blogs.msdn.microsoft.com/dotnet/2014/02/27/ryujit-ctp2-getting-ready-for-prime-time/
https://blogs.msdn.microsoft.com/dotnet/2014/02/27/ryujit-ctp2-getting-ready-for-prime-time/
https://blogs.msdn.microsoft.com/dotnet/2014/02/27/ryujit-ctp2-getting-ready-for-prime-time/
https://blogs.msdn.microsoft.com/dotnet/2014/02/27/ryujit-ctp2-getting-ready-for-prime-time/
https://blogs.msdn.microsoft.com/dotnet/2014/02/27/ryujit-ctp2-getting-ready-for-prime-time/
https://blogs.msdn.microsoft.com/dotnet/2014/02/27/ryujit-ctp2-getting-ready-for-prime-time/
https://blogs.msdn.microsoft.com/dotnet/2014/02/27/ryujit-ctp2-getting-ready-for-prime-time/
https://blogs.msdn.microsoft.com/dotnet/2014/02/27/ryujit-ctp2-getting-ready-for-prime-time/
https://blogs.msdn.microsoft.com/dotnet/2014/02/27/ryujit-ctp2-getting-ready-for-prime-time/
https://blogs.msdn.microsoft.com/dotnet/2014/02/27/ryujit-ctp2-getting-ready-for-prime-time/
https://blogs.msdn.microsoft.com/dotnet/2014/02/27/ryujit-ctp2-getting-ready-for-prime-time/
https://blogs.msdn.microsoft.com/dotnet/2014/02/27/ryujit-ctp2-getting-ready-for-prime-time/
https://blogs.msdn.microsoft.com/dotnet/2014/02/27/ryujit-ctp2-getting-ready-for-prime-time/
https://blogs.msdn.microsoft.com/dotnet/2014/02/27/ryujit-ctp2-getting-ready-for-prime-time/
https://blogs.msdn.microsoft.com/dotnet/2014/02/27/ryujit-ctp2-getting-ready-for-prime-time/
https://blogs.msdn.microsoft.com/dotnet/2014/02/27/ryujit-ctp2-getting-ready-for-prime-time/
https://blogs.msdn.microsoft.com/dotnet/2014/02/27/ryujit-ctp2-getting-ready-for-prime-time/
https://blogs.msdn.microsoft.com/dotnet/2014/02/27/ryujit-ctp2-getting-ready-for-prime-time/
https://blogs.msdn.microsoft.com/dotnet/2014/02/27/ryujit-ctp2-getting-ready-for-prime-time/
https://blogs.msdn.microsoft.com/dotnet/2014/02/27/ryujit-ctp2-getting-ready-for-prime-time/
https://blogs.msdn.microsoft.com/dotnet/2014/02/27/ryujit-ctp2-getting-ready-for-prime-time/
https://blogs.msdn.microsoft.com/dotnet/2014/02/27/ryujit-ctp2-getting-ready-for-prime-time/
https://blogs.msdn.microsoft.com/dotnet/2014/02/27/ryujit-ctp2-getting-ready-for-prime-time/
https://blogs.msdn.microsoft.com/dotnet/2014/02/27/ryujit-ctp2-getting-ready-for-prime-time/
https://github.com/dotnet/announcements/issues/10
https://github.com/dotnet/announcements/issues/10
https://github.com/dotnet/announcements/issues/10
https://github.com/dotnet/announcements/issues/10
https://github.com/dotnet/announcements/issues/10
https://github.com/dotnet/announcements/issues/10
https://github.com/dotnet/announcements/issues/10
https://github.com/dotnet/announcements/issues/10
https://github.com/dotnet/announcements/issues/10
https://github.com/dotnet/announcements/issues/10
https://github.com/dotnet/announcements/issues/10
https://github.com/dotnet/announcements/issues/10
https://github.com/dotnet/announcements/issues/10
https://github.com/dotnet/announcements/issues/10
https://github.com/dotnet/core
https://github.com/dotnet/core
https://github.com/dotnet/core
https://github.com/dotnet/core
https://github.com/dotnet/core
https://github.com/dotnet/core
https://github.com/dotnet/core
https://github.com/dotnet/core
https://github.com/dotnet/core
https://github.com/dotnet/core

Day 01 - Overview of the .NET Framework

[10]

.NET Core features
Here are some important features of .NET Core, that make .NET Core an important
evolution step in software development:

Cross-platform: Currently, .NET Core can be run on Windows, Linux, and
macOS; in the future, there may be more. Refer to the roadmap (https:/ ​/ ​github.
com/​dotnet/ ​core/ ​blob/ ​master/ ​roadmap. ​md) for more info.
Having easy command-line tools: You can use command-line tools for exercise
with .NET Core. Refer to CLI tools for more at https:/ ​/ ​docs. ​microsoft. ​com/​en-
us/​dotnet/ ​articles/ ​core/ ​tools/ ​index.
Having compatibility: With the use of the .NET standard library, .NET Core is
compatible with the .NET Frameworks, Xamarin and Mono.
Open source: .NET Core platform is released under MIT License and is a .NET
Foundation project (https:/ ​/​dotnetfoundation. ​org/ ​).

What makes .NET Core?
.NET Core is a combination of coreclr, corefx, and cli and roslyn. These are the main
components of .NET Core composition.

Coreclr: It is a .NET runtime and provides assembly loading, garbage collector,
and many more. You can check coreclr for more info at https:/ ​/​github. ​com/
dotnet/​coreclr.
Corefx: It is a framework library; you can check corefx for more info at https:/ ​/
github.​com/ ​dotnet/ ​corefx.
Cli: It is nothing but a command-line interface tool and roslyn is the language
compiler (the C# language in our case). Refer to cli (https:/ ​/​github. ​com/
dotnet/​cli) and Roslyn for more info at https:/ ​/ ​github. ​com/ ​dotnet/ ​roslyn.

https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/core/blob/master/roadmap.md
https://docs.microsoft.com/en-us/dotnet/articles/core/tools/index
https://docs.microsoft.com/en-us/dotnet/articles/core/tools/index
https://docs.microsoft.com/en-us/dotnet/articles/core/tools/index
https://docs.microsoft.com/en-us/dotnet/articles/core/tools/index
https://docs.microsoft.com/en-us/dotnet/articles/core/tools/index
https://docs.microsoft.com/en-us/dotnet/articles/core/tools/index
https://docs.microsoft.com/en-us/dotnet/articles/core/tools/index
https://docs.microsoft.com/en-us/dotnet/articles/core/tools/index
https://docs.microsoft.com/en-us/dotnet/articles/core/tools/index
https://docs.microsoft.com/en-us/dotnet/articles/core/tools/index
https://docs.microsoft.com/en-us/dotnet/articles/core/tools/index
https://docs.microsoft.com/en-us/dotnet/articles/core/tools/index
https://docs.microsoft.com/en-us/dotnet/articles/core/tools/index
https://docs.microsoft.com/en-us/dotnet/articles/core/tools/index
https://docs.microsoft.com/en-us/dotnet/articles/core/tools/index
https://docs.microsoft.com/en-us/dotnet/articles/core/tools/index
https://docs.microsoft.com/en-us/dotnet/articles/core/tools/index
https://docs.microsoft.com/en-us/dotnet/articles/core/tools/index
https://docs.microsoft.com/en-us/dotnet/articles/core/tools/index
https://docs.microsoft.com/en-us/dotnet/articles/core/tools/index
https://docs.microsoft.com/en-us/dotnet/articles/core/tools/index
https://docs.microsoft.com/en-us/dotnet/articles/core/tools/index
https://dotnetfoundation.org/
https://dotnetfoundation.org/
https://dotnetfoundation.org/
https://dotnetfoundation.org/
https://dotnetfoundation.org/
https://dotnetfoundation.org/
https://dotnetfoundation.org/
https://dotnetfoundation.org/
https://github.com/dotnet/coreclr
https://github.com/dotnet/coreclr
https://github.com/dotnet/coreclr
https://github.com/dotnet/coreclr
https://github.com/dotnet/coreclr
https://github.com/dotnet/coreclr
https://github.com/dotnet/coreclr
https://github.com/dotnet/coreclr
https://github.com/dotnet/coreclr
https://github.com/dotnet/coreclr
https://github.com/dotnet/corefx
https://github.com/dotnet/corefx
https://github.com/dotnet/corefx
https://github.com/dotnet/corefx
https://github.com/dotnet/corefx
https://github.com/dotnet/corefx
https://github.com/dotnet/corefx
https://github.com/dotnet/corefx
https://github.com/dotnet/corefx
https://github.com/dotnet/corefx
https://github.com/dotnet/cli
https://github.com/dotnet/cli
https://github.com/dotnet/cli
https://github.com/dotnet/cli
https://github.com/dotnet/cli
https://github.com/dotnet/cli
https://github.com/dotnet/cli
https://github.com/dotnet/cli
https://github.com/dotnet/cli
https://github.com/dotnet/cli
https://github.com/dotnet/roslyn
https://github.com/dotnet/roslyn
https://github.com/dotnet/roslyn
https://github.com/dotnet/roslyn
https://github.com/dotnet/roslyn
https://github.com/dotnet/roslyn
https://github.com/dotnet/roslyn
https://github.com/dotnet/roslyn
https://github.com/dotnet/roslyn
https://github.com/dotnet/roslyn
https://github.com/dotnet/roslyn

Day 01 - Overview of the .NET Framework

[11]

What is .NET Standard?
The .NET Standard is a set of APIs that resolves the problems of code sharing while you’re
trying to write cross-platform applications. Currently, Microsoft is working on .NET
Standard 2.0 to make it streamlined, and these standards will be implemented by all, that is,
.NET Framework, .NET Core, and Xamarin. With the use of .NET Standard (that is a set of
APIs), you are ensuring that your program and class library will be available for all targeted
.NET Frameworks and .NET Core. In other words, .NET Standard will replace Portable
Class Libraries (PCL). For more information, refer to https:/ ​/​blogs. ​msdn. ​microsoft. ​com/
dotnet/​2016/​09/​26/ ​introducing- ​net- ​standard/ ​.

The .NET Standard 2.0 repository is available at https:/ ​/​github. ​com/
dotnet/ ​standard.

Till now, you've got an idea of .NET Core and a few other things that help build cross-
platform applications. In the coming sections, we will prepare the environment in order to
start learning the C# language using Visual Studio 2017 (preferably the community edition).

Available IDEs and editors for C#
Integrated Development Environment (IDE) is nothing but software facilitating the
development of applications. On the other hand, editors are basically meant to add/update
predefined or new content. When we talk about the C# editor, we are referring to an editor
that helps write C# programs. Some editors come with a lot of add-ons or plugins and can
compile or run the programs.

We will use Visual Studio 2017 as our preferred C# IDE; however, there are a few more C#
IDEs and editors you can go with:

Visual Studio Code: VS Code is an editor, and you can start by downloading it1.
from https:/ ​/​code. ​visualstudio. ​com/ ​. To start with VS Code, you need to
install the C# extension from https:/ ​/​marketplace. ​visualstudio. ​com/ ​items?
itemName= ​ms- ​vscode. ​csharp.
Cloud9: It is a web browser-based IDE. You can start it for free by signing up at2.
https:/​/ ​c9. ​io/ ​signup.
JetBrain Rider: This is a cross-platform IDE by JetBrains. For more information,3.
visit https:/ ​/ ​www. ​jetbrains. ​com/​rider/ ​.
Zeus IDE: This is an IDE designed for the Windows platform. You can start using4.
Zeus from https:/ ​/ ​www. ​zeusedit. ​com/​index. ​html.

https://blogs.msdn.microsoft.com/dotnet/2016/09/26/introducing-net-standard/
https://blogs.msdn.microsoft.com/dotnet/2016/09/26/introducing-net-standard/
https://blogs.msdn.microsoft.com/dotnet/2016/09/26/introducing-net-standard/
https://blogs.msdn.microsoft.com/dotnet/2016/09/26/introducing-net-standard/
https://blogs.msdn.microsoft.com/dotnet/2016/09/26/introducing-net-standard/
https://blogs.msdn.microsoft.com/dotnet/2016/09/26/introducing-net-standard/
https://blogs.msdn.microsoft.com/dotnet/2016/09/26/introducing-net-standard/
https://blogs.msdn.microsoft.com/dotnet/2016/09/26/introducing-net-standard/
https://blogs.msdn.microsoft.com/dotnet/2016/09/26/introducing-net-standard/
https://blogs.msdn.microsoft.com/dotnet/2016/09/26/introducing-net-standard/
https://blogs.msdn.microsoft.com/dotnet/2016/09/26/introducing-net-standard/
https://blogs.msdn.microsoft.com/dotnet/2016/09/26/introducing-net-standard/
https://blogs.msdn.microsoft.com/dotnet/2016/09/26/introducing-net-standard/
https://blogs.msdn.microsoft.com/dotnet/2016/09/26/introducing-net-standard/
https://blogs.msdn.microsoft.com/dotnet/2016/09/26/introducing-net-standard/
https://blogs.msdn.microsoft.com/dotnet/2016/09/26/introducing-net-standard/
https://blogs.msdn.microsoft.com/dotnet/2016/09/26/introducing-net-standard/
https://blogs.msdn.microsoft.com/dotnet/2016/09/26/introducing-net-standard/
https://blogs.msdn.microsoft.com/dotnet/2016/09/26/introducing-net-standard/
https://blogs.msdn.microsoft.com/dotnet/2016/09/26/introducing-net-standard/
https://blogs.msdn.microsoft.com/dotnet/2016/09/26/introducing-net-standard/
https://blogs.msdn.microsoft.com/dotnet/2016/09/26/introducing-net-standard/
https://blogs.msdn.microsoft.com/dotnet/2016/09/26/introducing-net-standard/
https://blogs.msdn.microsoft.com/dotnet/2016/09/26/introducing-net-standard/
https://blogs.msdn.microsoft.com/dotnet/2016/09/26/introducing-net-standard/
https://github.com/dotnet/standard
https://github.com/dotnet/standard
https://github.com/dotnet/standard
https://github.com/dotnet/standard
https://github.com/dotnet/standard
https://github.com/dotnet/standard
https://github.com/dotnet/standard
https://github.com/dotnet/standard
https://github.com/dotnet/standard
https://github.com/dotnet/standard
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://c9.io/signup
https://c9.io/signup
https://c9.io/signup
https://c9.io/signup
https://c9.io/signup
https://c9.io/signup
https://c9.io/signup
https://c9.io/signup
https://c9.io/signup
https://www.jetbrains.com/rider/
https://www.jetbrains.com/rider/
https://www.jetbrains.com/rider/
https://www.jetbrains.com/rider/
https://www.jetbrains.com/rider/
https://www.jetbrains.com/rider/
https://www.jetbrains.com/rider/
https://www.jetbrains.com/rider/
https://www.jetbrains.com/rider/
https://www.jetbrains.com/rider/
https://www.jetbrains.com/rider/
https://www.jetbrains.com/rider/
https://www.zeusedit.com/index.html
https://www.zeusedit.com/index.html
https://www.zeusedit.com/index.html
https://www.zeusedit.com/index.html
https://www.zeusedit.com/index.html
https://www.zeusedit.com/index.html
https://www.zeusedit.com/index.html
https://www.zeusedit.com/index.html
https://www.zeusedit.com/index.html
https://www.zeusedit.com/index.html
https://www.zeusedit.com/index.html
https://www.zeusedit.com/index.html
https://www.zeusedit.com/index.html

Day 01 - Overview of the .NET Framework

[12]

Text editor: This is the way you can go without any installation; just use a text5.
editor of your choice. I use Notepad++ (https:/ ​/​notepad- ​plus- ​plus. ​org/
download/ ​v7. ​3. ​3. ​html) and the Command Line Interface (CLI) to build code.
Refer to https:/ ​/ ​docs. ​microsoft. ​com/ ​en- ​us/​dotnet/ ​articles/ ​core/ ​tools/ ​ to
know more about how to start with the CLI.

There may be more alternative IDEs and editors, but they are not as important to us.

Setting up the environment
In this section, we will see step by step how to initiate the installation of Visual Studio 2017
(preferably, the community edition) on Windows 10:

Go to https:/ ​/​www. ​visualstudio. ​com/ ​downloads/ ​ (you can also get the benefits1.
of Dev Essentials from https:/ ​/​www. ​visualstudio. ​com/ ​dev- ​essentials/ ​).
Download Visual Studio Community2.
(https://www.visualstudio.com/thank-you-downloading-visual-studio/?sku=
Community&rel=15):

Start the Visual Studio setup.3.

https://notepad-plus-plus.org/download/v7.3.3.html
https://notepad-plus-plus.org/download/v7.3.3.html
https://notepad-plus-plus.org/download/v7.3.3.html
https://notepad-plus-plus.org/download/v7.3.3.html
https://notepad-plus-plus.org/download/v7.3.3.html
https://notepad-plus-plus.org/download/v7.3.3.html
https://notepad-plus-plus.org/download/v7.3.3.html
https://notepad-plus-plus.org/download/v7.3.3.html
https://notepad-plus-plus.org/download/v7.3.3.html
https://notepad-plus-plus.org/download/v7.3.3.html
https://notepad-plus-plus.org/download/v7.3.3.html
https://notepad-plus-plus.org/download/v7.3.3.html
https://notepad-plus-plus.org/download/v7.3.3.html
https://notepad-plus-plus.org/download/v7.3.3.html
https://notepad-plus-plus.org/download/v7.3.3.html
https://notepad-plus-plus.org/download/v7.3.3.html
https://notepad-plus-plus.org/download/v7.3.3.html
https://notepad-plus-plus.org/download/v7.3.3.html
https://notepad-plus-plus.org/download/v7.3.3.html
https://notepad-plus-plus.org/download/v7.3.3.html
https://docs.microsoft.com/en-us/dotnet/articles/core/tools/
https://docs.microsoft.com/en-us/dotnet/articles/core/tools/
https://docs.microsoft.com/en-us/dotnet/articles/core/tools/
https://docs.microsoft.com/en-us/dotnet/articles/core/tools/
https://docs.microsoft.com/en-us/dotnet/articles/core/tools/
https://docs.microsoft.com/en-us/dotnet/articles/core/tools/
https://docs.microsoft.com/en-us/dotnet/articles/core/tools/
https://docs.microsoft.com/en-us/dotnet/articles/core/tools/
https://docs.microsoft.com/en-us/dotnet/articles/core/tools/
https://docs.microsoft.com/en-us/dotnet/articles/core/tools/
https://docs.microsoft.com/en-us/dotnet/articles/core/tools/
https://docs.microsoft.com/en-us/dotnet/articles/core/tools/
https://docs.microsoft.com/en-us/dotnet/articles/core/tools/
https://docs.microsoft.com/en-us/dotnet/articles/core/tools/
https://docs.microsoft.com/en-us/dotnet/articles/core/tools/
https://docs.microsoft.com/en-us/dotnet/articles/core/tools/
https://docs.microsoft.com/en-us/dotnet/articles/core/tools/
https://docs.microsoft.com/en-us/dotnet/articles/core/tools/
https://docs.microsoft.com/en-us/dotnet/articles/core/tools/
https://docs.microsoft.com/en-us/dotnet/articles/core/tools/
https://docs.microsoft.com/en-us/dotnet/articles/core/tools/
https://docs.microsoft.com/en-us/dotnet/articles/core/tools/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/dev-essentials/
https://www.visualstudio.com/dev-essentials/
https://www.visualstudio.com/dev-essentials/
https://www.visualstudio.com/dev-essentials/
https://www.visualstudio.com/dev-essentials/
https://www.visualstudio.com/dev-essentials/
https://www.visualstudio.com/dev-essentials/
https://www.visualstudio.com/dev-essentials/
https://www.visualstudio.com/dev-essentials/
https://www.visualstudio.com/dev-essentials/
https://www.visualstudio.com/dev-essentials/
https://www.visualstudio.com/dev-essentials/
https://www.visualstudio.com/dev-essentials/
https://www.visualstudio.com/dev-essentials/
https://www.visualstudio.com/thank-you-downloading-visual-studio/?sku=Community&rel=15
https://www.visualstudio.com/thank-you-downloading-visual-studio/?sku=Community&rel=15

Day 01 - Overview of the .NET Framework

[13]

From Workloads, select the options you want to install. For our book, we need4.
.NET desktop development and .NET Core:

Click on Install to start the installation:5.

Day 01 - Overview of the .NET Framework

[14]

Click Launch once the installation is completed.6.
Sign up for Visual Studio using your Live ID.7.
Select Visual C# as your development setting.8.
You will see the start page as follows:9.

We are all set to start with our first step.

Hands - on exercises
Answer the following questions by covering the concepts of today’s learning.

What is programming? Write down an algorithm to find out vowel counts from
all the pages of book, Learn C# in 7-days.
What is .NET Core and .NET Standard?
What makes a .NET Core an evolutional software ?

Day 01 - Overview of the .NET Framework

[15]

Revisiting Day 01
Today, we walked you through some important concepts of .NET Core and .NET Standard.
You learned what programs and algorithms are in the programming world.

2
Day 02 - Getting Started with

C#
Today, we are on day two of our seven-day learning series. Yesterday, we had gone
through the basic understanding of .NET Core and its important aspects. Today, we will
discuss the C# programming language. We will start with basics concepts by understanding
a typical C# program, and then we will start looking at other stuff by covering reserved
keywords, types, and operators; by the end of day, we will be able to write a complete C#
program after covering the following topics:

Introducing C#
Understanding a typical C# program
An overview of C# reserved keywords, types, and operators
An overview of type conversion
Understanding statements
Arrays and string manipulations
Structure versus class

Introduction to C#
In simple words, C# (pronounced See-Sharp) is a programming language that is developed
by Microsoft. C# is approved by International Standards Organization (ISO) and
European Computer Manufacturers Association (ECMA).

Day 02 - Getting Started with C#

[17]

This is the definition on the official website (https:/ ​/​docs. ​microsoft. ​com/ ​en- ​us/​dotnet/
csharp/​tour-​of-​csharp/ ​index):

C# is a simple, modern, object-oriented, and type-safe programming language. C# has its
roots in the C family of languages and will be immediately familiar to C, C++, Java, and
JavaScript programmers.

Language C# is designed to adhere to Common Language Infrastructure (CLI), which we
discussed on day one.

C# is the most popular professional language because of the following reasons:

It is an object-oriented language
It is component-oriented
It is a structured language
The main part that makes it the most popular: this is a part of the .NET
Framework
It has a unified type system, which means all types of language C# inherits from a
single type object (this is also known as the mother type)
It was constructed with a robust durable application such as Garbage collection
(discussed on day one)
It has the ability to handle unknown issues within a program, which is known as
exceptional handling (we will discuss exception handling on day four)
Robust support of reflection, which enables dynamic programming (we will
discuss reflection on day four)

History of the C# language
The C# language was developed by Anders Hejlsberg and his team. The language name is
inspired by the musical notation sharp (#), which indicates that the written note should be
made a semitone higher in pitch.

The first released version was C# 1.0, which was launched in January 2002, and the current
version is C# 7.0.

https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/index
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/index
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/index
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/index
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/index
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/index
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/index
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/index
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/index
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/index
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/index
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/index
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/index
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/index
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/index
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/index
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/index
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/index
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/index
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/index
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/index
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/index
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/index
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/index

Day 02 - Getting Started with C#

[18]

The following table depicts all versions of the C# language.

Version of
C#

Release year Description

1.0 January 2002 With Visual Studio 2002 – .NET Framework 1.0

1.2 April 2003 With Visual Studio 2003 – .NET Framework 1.1

2.0 November 2005 With Visual Studio 2005 – .NET Framework 2.0

3.0 November 2007 Visual Studio 2008, Visual Studio 2010 – .NET
Framework 3.0 and 3.5

4.0 April 2010 Visual Studio 2010 – .NET Framework 4

5.0 August 2012 Visual Studio 2012, 2013 – .NET Framework 4.5

6.0 July 2015 Visual Studio 2015 – .NET Framework 4.6

C# 7.0 March 2017 Visual Studio 2017 – .NET Framework 4.6.2

C# 7.1 August 2017 Visual Studio 2017 update3 – .NET Framework 4.7

In the upcoming section, we will discuss this language in detail, along with code examples.
We will discuss C# language's keywords, types, operators, and so on.

Understanding a typical C# program
Before we start writing a program in C#, let's first go back to day one, where we discussed
the various IDEs and editors that are helpful in writing programs/applications using the C#
language. Revisit day one and understand various editors and IDEs and check why we
should go with one of our choice. We will be using Visual Studio 2017 update 3 for all our
examples in this book.

To know the steps to install Visual Studio 2017, refer to https:/ ​/​docs.
microsoft. ​com/ ​en- ​us/ ​visualstudio/ ​install/ ​install- ​visual- ​studio.

https://docs.microsoft.com/en-us/visualstudio/install/install-visual-studio
https://docs.microsoft.com/en-us/visualstudio/install/install-visual-studio
https://docs.microsoft.com/en-us/visualstudio/install/install-visual-studio
https://docs.microsoft.com/en-us/visualstudio/install/install-visual-studio
https://docs.microsoft.com/en-us/visualstudio/install/install-visual-studio
https://docs.microsoft.com/en-us/visualstudio/install/install-visual-studio
https://docs.microsoft.com/en-us/visualstudio/install/install-visual-studio
https://docs.microsoft.com/en-us/visualstudio/install/install-visual-studio
https://docs.microsoft.com/en-us/visualstudio/install/install-visual-studio
https://docs.microsoft.com/en-us/visualstudio/install/install-visual-studio
https://docs.microsoft.com/en-us/visualstudio/install/install-visual-studio
https://docs.microsoft.com/en-us/visualstudio/install/install-visual-studio
https://docs.microsoft.com/en-us/visualstudio/install/install-visual-studio
https://docs.microsoft.com/en-us/visualstudio/install/install-visual-studio
https://docs.microsoft.com/en-us/visualstudio/install/install-visual-studio
https://docs.microsoft.com/en-us/visualstudio/install/install-visual-studio
https://docs.microsoft.com/en-us/visualstudio/install/install-visual-studio
https://docs.microsoft.com/en-us/visualstudio/install/install-visual-studio
https://docs.microsoft.com/en-us/visualstudio/install/install-visual-studio
https://docs.microsoft.com/en-us/visualstudio/install/install-visual-studio
https://docs.microsoft.com/en-us/visualstudio/install/install-visual-studio
https://docs.microsoft.com/en-us/visualstudio/install/install-visual-studio

Day 02 - Getting Started with C#

[19]

To get start with a simple C# program (we will create a console application), follow these
steps:

Initiate your Visual Studio.1.
Go to File | New | Project (or ctrl +Shift + N).2.
Under Visual C# node, select .NET Core and then select Console App.3.
Name your program, say, Day02, and click on OK (see highlighted text in the4.
following figure):

You will get the following code in class Program.cs – this is the default code provided by
Visual Studio; you can amend it as per your need:

using System;

namespace Day02
{
class Program
 {
 static void Main(string[] args)
 {

Day 02 - Getting Started with C#

[20]

 Console.WriteLine("Hello World!");
 }
 }
}

By hitting the F5 key on your keyboard, you will run the program in Debug mode.

Typically, every program has two different configurations or modes, that
is, Debug and Release. In Debug mode, all compiled files and symbols that
are helpful to drill down any issue encountered during the execution of
application will be loaded. On the other hand, Release is kind of a clean
run, where only binaries without Debug symbols load and perform the
action. For more information, refer to https:/ ​/ ​stackoverflow. ​com/
questions/ ​933739/ ​what- ​is-​the- ​difference- ​between- ​release- ​and-
debug- ​modes- ​in- ​visual- ​studio.

You can see the following output when the program runs:

Before moving further, let's analyze the following figure of our console application on
Visual Studio:

The preceding figure depicts a typical C# program; we are using Visual Studio, but the
console program remains unchanged across different IDEs or editors. Let's discuss this in
more detail.

https://stackoverflow.com/questions/933739/what-is-the-difference-between-release-and-debug-modes-in-visual-studio
https://stackoverflow.com/questions/933739/what-is-the-difference-between-release-and-debug-modes-in-visual-studio
https://stackoverflow.com/questions/933739/what-is-the-difference-between-release-and-debug-modes-in-visual-studio
https://stackoverflow.com/questions/933739/what-is-the-difference-between-release-and-debug-modes-in-visual-studio
https://stackoverflow.com/questions/933739/what-is-the-difference-between-release-and-debug-modes-in-visual-studio
https://stackoverflow.com/questions/933739/what-is-the-difference-between-release-and-debug-modes-in-visual-studio
https://stackoverflow.com/questions/933739/what-is-the-difference-between-release-and-debug-modes-in-visual-studio
https://stackoverflow.com/questions/933739/what-is-the-difference-between-release-and-debug-modes-in-visual-studio
https://stackoverflow.com/questions/933739/what-is-the-difference-between-release-and-debug-modes-in-visual-studio
https://stackoverflow.com/questions/933739/what-is-the-difference-between-release-and-debug-modes-in-visual-studio
https://stackoverflow.com/questions/933739/what-is-the-difference-between-release-and-debug-modes-in-visual-studio
https://stackoverflow.com/questions/933739/what-is-the-difference-between-release-and-debug-modes-in-visual-studio
https://stackoverflow.com/questions/933739/what-is-the-difference-between-release-and-debug-modes-in-visual-studio
https://stackoverflow.com/questions/933739/what-is-the-difference-between-release-and-debug-modes-in-visual-studio
https://stackoverflow.com/questions/933739/what-is-the-difference-between-release-and-debug-modes-in-visual-studio
https://stackoverflow.com/questions/933739/what-is-the-difference-between-release-and-debug-modes-in-visual-studio
https://stackoverflow.com/questions/933739/what-is-the-difference-between-release-and-debug-modes-in-visual-studio
https://stackoverflow.com/questions/933739/what-is-the-difference-between-release-and-debug-modes-in-visual-studio
https://stackoverflow.com/questions/933739/what-is-the-difference-between-release-and-debug-modes-in-visual-studio
https://stackoverflow.com/questions/933739/what-is-the-difference-between-release-and-debug-modes-in-visual-studio
https://stackoverflow.com/questions/933739/what-is-the-difference-between-release-and-debug-modes-in-visual-studio
https://stackoverflow.com/questions/933739/what-is-the-difference-between-release-and-debug-modes-in-visual-studio
https://stackoverflow.com/questions/933739/what-is-the-difference-between-release-and-debug-modes-in-visual-studio
https://stackoverflow.com/questions/933739/what-is-the-difference-between-release-and-debug-modes-in-visual-studio
https://stackoverflow.com/questions/933739/what-is-the-difference-between-release-and-debug-modes-in-visual-studio
https://stackoverflow.com/questions/933739/what-is-the-difference-between-release-and-debug-modes-in-visual-studio
https://stackoverflow.com/questions/933739/what-is-the-difference-between-release-and-debug-modes-in-visual-studio
https://stackoverflow.com/questions/933739/what-is-the-difference-between-release-and-debug-modes-in-visual-studio
https://stackoverflow.com/questions/933739/what-is-the-difference-between-release-and-debug-modes-in-visual-studio
https://stackoverflow.com/questions/933739/what-is-the-difference-between-release-and-debug-modes-in-visual-studio
https://stackoverflow.com/questions/933739/what-is-the-difference-between-release-and-debug-modes-in-visual-studio
https://stackoverflow.com/questions/933739/what-is-the-difference-between-release-and-debug-modes-in-visual-studio
https://stackoverflow.com/questions/933739/what-is-the-difference-between-release-and-debug-modes-in-visual-studio

Day 02 - Getting Started with C#

[21]

1 (System)
This is a place where we defined what the namespaces going to be consumed in the
program/application are. Generally, this is called using a statement, which includes the
usage of external, internal, or any other namespaces.

System is a typical namespace that contains a lot of fundamental classes. For more
information, refer to https:/ ​/ ​docs. ​microsoft. ​com/ ​en- ​us/​dotnet/ ​api/ ​system? ​view=
netcore-​2.​0.

3 (Day02)
This is the namespace of our existing console application.

A namespace is a way to keep one set of names separate from another, which means you
can create as many namespaces as you want and the classes under different namespaces
will treat them as a separate, although they have the same name; that is, if you declare a
ClassExample class in namespace Day02, it would be different from the ClassExample
class declared in the Day02New namespace and will work without any conflicts.

This is a typical example that shows two classes of the same name with two different
namespaces:

namespace Day02
{
public class ClassExample
 {
public void Display()
 {
Console.WriteLine("This is a class 'ClassExample' of namespace 'Day02'. ");
 }
 }
}

namespace Day02New
{

public class ClassExample
 {
public void Display()
 {
Console.WriteLine("This is a class 'ClassExample' of namespace 'Day02New'.
");
 }

https://docs.microsoft.com/en-us/dotnet/api/system?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system?view=netcore-2.0

Day 02 - Getting Started with C#

[22]

 }
}

The preceding code would be called like this:

private static void SameClassDifferentNamespacesExample()
{
var class1 = new ClassExample();
var class2 = new Day02New.ClassExample();
 class1.Display();
 class2.Display();
}

This will return the following output:

2 (Program)
This is a class name defined in namespace - day two.

A class in C# is a blueprint of an object. Objects are dynamically created instances of a class.
In our console program, we have a class program that contains a method named Main.

4 (Main)
This is an entry point for our program. At least one Main method is required for our C#
program, and it should be static. We will discuss static in detail in the upcoming section,
Overview of C# reserved keywords. Main is also a reserved keyword.

An entry is a way that lets CLR know the what and where of the functions located in the
DLL. For instance, whenever we run our console application, it tells CLR that Main is the
entry point and everything surrounds here. For more details, refer to https:/ ​/​docs.
microsoft.​com/​en- ​us/ ​dotnet/ ​framework/ ​interop/ ​specifying- ​an- ​entry- ​point and
https:/​/​docs.​microsoft. ​com/ ​en- ​us/ ​dotnet/ ​framework/ ​interop/ ​specifying- ​an- ​entry-
point.

https://docs.microsoft.com/en-us/dotnet/framework/interop/specifying-an-entry-point
https://docs.microsoft.com/en-us/dotnet/framework/interop/specifying-an-entry-point
https://docs.microsoft.com/en-us/dotnet/framework/interop/specifying-an-entry-point
https://docs.microsoft.com/en-us/dotnet/framework/interop/specifying-an-entry-point
https://docs.microsoft.com/en-us/dotnet/framework/interop/specifying-an-entry-point
https://docs.microsoft.com/en-us/dotnet/framework/interop/specifying-an-entry-point
https://docs.microsoft.com/en-us/dotnet/framework/interop/specifying-an-entry-point
https://docs.microsoft.com/en-us/dotnet/framework/interop/specifying-an-entry-point
https://docs.microsoft.com/en-us/dotnet/framework/interop/specifying-an-entry-point
https://docs.microsoft.com/en-us/dotnet/framework/interop/specifying-an-entry-point
https://docs.microsoft.com/en-us/dotnet/framework/interop/specifying-an-entry-point
https://docs.microsoft.com/en-us/dotnet/framework/interop/specifying-an-entry-point
https://docs.microsoft.com/en-us/dotnet/framework/interop/specifying-an-entry-point
https://docs.microsoft.com/en-us/dotnet/framework/interop/specifying-an-entry-point
https://docs.microsoft.com/en-us/dotnet/framework/interop/specifying-an-entry-point
https://docs.microsoft.com/en-us/dotnet/framework/interop/specifying-an-entry-point
https://docs.microsoft.com/en-us/dotnet/framework/interop/specifying-an-entry-point
https://docs.microsoft.com/en-us/dotnet/framework/interop/specifying-an-entry-point
https://docs.microsoft.com/en-us/dotnet/framework/interop/specifying-an-entry-point
https://docs.microsoft.com/en-us/dotnet/framework/interop/specifying-an-entry-point
https://docs.microsoft.com/en-us/dotnet/framework/interop/specifying-an-entry-point
https://docs.microsoft.com/en-us/dotnet/framework/interop/specifying-an-entry-point
https://docs.microsoft.com/en-us/dotnet/framework/interop/specifying-an-entry-point
https://docs.microsoft.com/en-us/dotnet/framework/interop/specifying-an-entry-point
https://docs.microsoft.com/en-us/dotnet/framework/interop/specifying-an-entry-point
https://docs.microsoft.com/en-us/dotnet/framework/interop/specifying-an-entry-point
https://docs.microsoft.com/en-us/dotnet/framework/interop/specifying-an-entry-point
https://docs.microsoft.com/en-us/dotnet/framework/interop/specifying-an-entry-point
https://docs.microsoft.com/en-us/dotnet/framework/interop/specifying-an-entry-point
https://docs.microsoft.com/en-us/dotnet/framework/interop/specifying-an-entry-point
https://docs.microsoft.com/en-us/dotnet/framework/interop/specifying-an-entry-point
https://docs.microsoft.com/en-us/dotnet/framework/interop/specifying-an-entry-point
https://docs.microsoft.com/en-us/dotnet/framework/interop/specifying-an-entry-point
https://docs.microsoft.com/en-us/dotnet/framework/interop/specifying-an-entry-point
https://docs.microsoft.com/en-us/dotnet/framework/interop/specifying-an-entry-point
https://docs.microsoft.com/en-us/dotnet/framework/interop/specifying-an-entry-point
https://docs.microsoft.com/en-us/dotnet/framework/interop/specifying-an-entry-point
https://docs.microsoft.com/en-us/dotnet/framework/interop/specifying-an-entry-point
https://docs.microsoft.com/en-us/dotnet/framework/interop/specifying-an-entry-point
https://docs.microsoft.com/en-us/dotnet/framework/interop/specifying-an-entry-point
https://docs.microsoft.com/en-us/dotnet/framework/interop/specifying-an-entry-point
https://docs.microsoft.com/en-us/dotnet/framework/interop/specifying-an-entry-point
https://docs.microsoft.com/en-us/dotnet/framework/interop/specifying-an-entry-point
https://docs.microsoft.com/en-us/dotnet/framework/interop/specifying-an-entry-point
https://docs.microsoft.com/en-us/dotnet/framework/interop/specifying-an-entry-point
https://docs.microsoft.com/en-us/dotnet/framework/interop/specifying-an-entry-point
https://docs.microsoft.com/en-us/dotnet/framework/interop/specifying-an-entry-point
https://docs.microsoft.com/en-us/dotnet/framework/interop/specifying-an-entry-point
https://docs.microsoft.com/en-us/dotnet/framework/interop/specifying-an-entry-point
https://docs.microsoft.com/en-us/dotnet/framework/interop/specifying-an-entry-point
https://docs.microsoft.com/en-us/dotnet/framework/interop/specifying-an-entry-point
https://docs.microsoft.com/en-us/dotnet/framework/interop/specifying-an-entry-point

Day 02 - Getting Started with C#

[23]

5 (Day02)
This is the name of the solution of our console application.

A solution can contain many libraries, applications, projects, and so on. For instance, our
solution, Day02, would contain another project called Day03 or Day04. A Visual Studio
solution filename for our console application is Day02.sln.
Refer to https:/​/ ​stackoverflow. ​com/ ​questions/ ​30601187/ ​what- ​is-​a- ​solution- ​in-
visual-​studio in order to understand the Visual Studio solution.

To view the solution file, open the folder where Day02.sln solution file is
located. You can directly open this file using any text editor/Notepad. I
used Notepad++ (https:/ ​/​notepad- ​plus- ​plus. ​org/​) to view the solution
file.

The following screenshot depicts our solution file:

https://stackoverflow.com/questions/30601187/what-is-a-solution-in-visual-studio
https://stackoverflow.com/questions/30601187/what-is-a-solution-in-visual-studio
https://stackoverflow.com/questions/30601187/what-is-a-solution-in-visual-studio
https://stackoverflow.com/questions/30601187/what-is-a-solution-in-visual-studio
https://stackoverflow.com/questions/30601187/what-is-a-solution-in-visual-studio
https://stackoverflow.com/questions/30601187/what-is-a-solution-in-visual-studio
https://stackoverflow.com/questions/30601187/what-is-a-solution-in-visual-studio
https://stackoverflow.com/questions/30601187/what-is-a-solution-in-visual-studio
https://stackoverflow.com/questions/30601187/what-is-a-solution-in-visual-studio
https://stackoverflow.com/questions/30601187/what-is-a-solution-in-visual-studio
https://stackoverflow.com/questions/30601187/what-is-a-solution-in-visual-studio
https://stackoverflow.com/questions/30601187/what-is-a-solution-in-visual-studio
https://stackoverflow.com/questions/30601187/what-is-a-solution-in-visual-studio
https://stackoverflow.com/questions/30601187/what-is-a-solution-in-visual-studio
https://stackoverflow.com/questions/30601187/what-is-a-solution-in-visual-studio
https://stackoverflow.com/questions/30601187/what-is-a-solution-in-visual-studio
https://stackoverflow.com/questions/30601187/what-is-a-solution-in-visual-studio
https://stackoverflow.com/questions/30601187/what-is-a-solution-in-visual-studio
https://stackoverflow.com/questions/30601187/what-is-a-solution-in-visual-studio
https://stackoverflow.com/questions/30601187/what-is-a-solution-in-visual-studio
https://stackoverflow.com/questions/30601187/what-is-a-solution-in-visual-studio
https://stackoverflow.com/questions/30601187/what-is-a-solution-in-visual-studio
https://stackoverflow.com/questions/30601187/what-is-a-solution-in-visual-studio
https://stackoverflow.com/questions/30601187/what-is-a-solution-in-visual-studio
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/

Day 02 - Getting Started with C#

[24]

6 (Day02)
This is a project of our console application.

A project is a bundle that contains everything required for your program. This is the
definition of the project from the official website: https:/ ​/​docs. ​microsoft. ​com/ ​en-​us/
visualstudio/​ide/ ​solutions- ​and- ​projects- ​in- ​visual- ​studio

A project is contained, in a logical sense and in the file system, within a solution, which
may contain one or more projects, along with build information,Visual Studio window
settings and any miscellaneous files that aren't associated with any project. In a literal
sense, the solution is a text file with its own unique format; it is generally not intended to
be edited by hand.

Our project filename is Day02.csproj.

You are not required to have a project for your application. You can
directly start working on your C# files.

The following screenshot depicts our project file:

7 (Dependencies)
This refers to all references and binaries required to run a specific application.

https://docs.microsoft.com/en-us/visualstudio/ide/solutions-and-projects-in-visual-studio
https://docs.microsoft.com/en-us/visualstudio/ide/solutions-and-projects-in-visual-studio
https://docs.microsoft.com/en-us/visualstudio/ide/solutions-and-projects-in-visual-studio
https://docs.microsoft.com/en-us/visualstudio/ide/solutions-and-projects-in-visual-studio
https://docs.microsoft.com/en-us/visualstudio/ide/solutions-and-projects-in-visual-studio
https://docs.microsoft.com/en-us/visualstudio/ide/solutions-and-projects-in-visual-studio
https://docs.microsoft.com/en-us/visualstudio/ide/solutions-and-projects-in-visual-studio
https://docs.microsoft.com/en-us/visualstudio/ide/solutions-and-projects-in-visual-studio
https://docs.microsoft.com/en-us/visualstudio/ide/solutions-and-projects-in-visual-studio
https://docs.microsoft.com/en-us/visualstudio/ide/solutions-and-projects-in-visual-studio
https://docs.microsoft.com/en-us/visualstudio/ide/solutions-and-projects-in-visual-studio
https://docs.microsoft.com/en-us/visualstudio/ide/solutions-and-projects-in-visual-studio
https://docs.microsoft.com/en-us/visualstudio/ide/solutions-and-projects-in-visual-studio
https://docs.microsoft.com/en-us/visualstudio/ide/solutions-and-projects-in-visual-studio
https://docs.microsoft.com/en-us/visualstudio/ide/solutions-and-projects-in-visual-studio
https://docs.microsoft.com/en-us/visualstudio/ide/solutions-and-projects-in-visual-studio
https://docs.microsoft.com/en-us/visualstudio/ide/solutions-and-projects-in-visual-studio
https://docs.microsoft.com/en-us/visualstudio/ide/solutions-and-projects-in-visual-studio
https://docs.microsoft.com/en-us/visualstudio/ide/solutions-and-projects-in-visual-studio
https://docs.microsoft.com/en-us/visualstudio/ide/solutions-and-projects-in-visual-studio
https://docs.microsoft.com/en-us/visualstudio/ide/solutions-and-projects-in-visual-studio
https://docs.microsoft.com/en-us/visualstudio/ide/solutions-and-projects-in-visual-studio
https://docs.microsoft.com/en-us/visualstudio/ide/solutions-and-projects-in-visual-studio
https://docs.microsoft.com/en-us/visualstudio/ide/solutions-and-projects-in-visual-studio
https://docs.microsoft.com/en-us/visualstudio/ide/solutions-and-projects-in-visual-studio
https://docs.microsoft.com/en-us/visualstudio/ide/solutions-and-projects-in-visual-studio
https://docs.microsoft.com/en-us/visualstudio/ide/solutions-and-projects-in-visual-studio
https://docs.microsoft.com/en-us/visualstudio/ide/solutions-and-projects-in-visual-studio

Day 02 - Getting Started with C#

[25]

Dependency is an assembly or dll on which our application depends or where our
application is consuming the function of referred assembly. For instance, our console
application requires .NET Core 2.0 SDK, so it includes it as dependencies. Refer to the
following screenshot:

8 (Program.cs)
This is physical class filename.

Day 02 - Getting Started with C#

[26]

This is the name of a class file that is physically available on our disk drive. Class name and
filename could be different, which means if my class name is Program, then my class
filename could be Program1.cs. However, it is bad practice to call both class and filename
with different names, but you can do that and the compiler won't throw any exception. For
more information, refer to https:/ ​/ ​stackoverflow. ​com/ ​questions/ ​2224653/ ​c-​sharp- ​cs-
file-​name-​and-​class- ​name- ​need- ​to- ​be- ​matched.

Deep-dive into application using Visual Studio
In the previous section, you learned about various things that our console application can
contain. In this section, lets deep-dive to get more insight on this using Visual Studio.

To get started, go to the project properties. Do this from the solution explorer (right-click on
project and click on Properties) or from menus (Project | Day02 properties); you will get
the project properties window, as shown in the following screenshot:

https://stackoverflow.com/questions/2224653/c-sharp-cs-file-name-and-class-name-need-to-be-matched
https://stackoverflow.com/questions/2224653/c-sharp-cs-file-name-and-class-name-need-to-be-matched
https://stackoverflow.com/questions/2224653/c-sharp-cs-file-name-and-class-name-need-to-be-matched
https://stackoverflow.com/questions/2224653/c-sharp-cs-file-name-and-class-name-need-to-be-matched
https://stackoverflow.com/questions/2224653/c-sharp-cs-file-name-and-class-name-need-to-be-matched
https://stackoverflow.com/questions/2224653/c-sharp-cs-file-name-and-class-name-need-to-be-matched
https://stackoverflow.com/questions/2224653/c-sharp-cs-file-name-and-class-name-need-to-be-matched
https://stackoverflow.com/questions/2224653/c-sharp-cs-file-name-and-class-name-need-to-be-matched
https://stackoverflow.com/questions/2224653/c-sharp-cs-file-name-and-class-name-need-to-be-matched
https://stackoverflow.com/questions/2224653/c-sharp-cs-file-name-and-class-name-need-to-be-matched
https://stackoverflow.com/questions/2224653/c-sharp-cs-file-name-and-class-name-need-to-be-matched
https://stackoverflow.com/questions/2224653/c-sharp-cs-file-name-and-class-name-need-to-be-matched
https://stackoverflow.com/questions/2224653/c-sharp-cs-file-name-and-class-name-need-to-be-matched
https://stackoverflow.com/questions/2224653/c-sharp-cs-file-name-and-class-name-need-to-be-matched
https://stackoverflow.com/questions/2224653/c-sharp-cs-file-name-and-class-name-need-to-be-matched
https://stackoverflow.com/questions/2224653/c-sharp-cs-file-name-and-class-name-need-to-be-matched
https://stackoverflow.com/questions/2224653/c-sharp-cs-file-name-and-class-name-need-to-be-matched
https://stackoverflow.com/questions/2224653/c-sharp-cs-file-name-and-class-name-need-to-be-matched
https://stackoverflow.com/questions/2224653/c-sharp-cs-file-name-and-class-name-need-to-be-matched
https://stackoverflow.com/questions/2224653/c-sharp-cs-file-name-and-class-name-need-to-be-matched
https://stackoverflow.com/questions/2224653/c-sharp-cs-file-name-and-class-name-need-to-be-matched
https://stackoverflow.com/questions/2224653/c-sharp-cs-file-name-and-class-name-need-to-be-matched
https://stackoverflow.com/questions/2224653/c-sharp-cs-file-name-and-class-name-need-to-be-matched
https://stackoverflow.com/questions/2224653/c-sharp-cs-file-name-and-class-name-need-to-be-matched
https://stackoverflow.com/questions/2224653/c-sharp-cs-file-name-and-class-name-need-to-be-matched
https://stackoverflow.com/questions/2224653/c-sharp-cs-file-name-and-class-name-need-to-be-matched
https://stackoverflow.com/questions/2224653/c-sharp-cs-file-name-and-class-name-need-to-be-matched
https://stackoverflow.com/questions/2224653/c-sharp-cs-file-name-and-class-name-need-to-be-matched
https://stackoverflow.com/questions/2224653/c-sharp-cs-file-name-and-class-name-need-to-be-matched
https://stackoverflow.com/questions/2224653/c-sharp-cs-file-name-and-class-name-need-to-be-matched
https://stackoverflow.com/questions/2224653/c-sharp-cs-file-name-and-class-name-need-to-be-matched
https://stackoverflow.com/questions/2224653/c-sharp-cs-file-name-and-class-name-need-to-be-matched
https://stackoverflow.com/questions/2224653/c-sharp-cs-file-name-and-class-name-need-to-be-matched
https://stackoverflow.com/questions/2224653/c-sharp-cs-file-name-and-class-name-need-to-be-matched

Day 02 - Getting Started with C#

[27]

On the Application tab, we can set the Assembly name, the Default namespace, the Target
framework, and the Output type (the output types are Console Application, Windows
Application, Class Library).

The following screenshot is that of the Build tab:

From the Build tab, we can set Conditional compilation symbols, Platform target, and
other available options.

Conditional compilations are nothing but pre-processors, which we will
discuss on day six.

Day 02 - Getting Started with C#

[28]

The following screenshot depicts the Package tab:

The Package tab helps us directly create NuGet packages. In the earlier version, we needed
a lot of configuration settings to build a NuGet package. In the current version, we just need
to provide the information on the Package tab, and Visual Studio will generate the NuGet
package according to our options. The Debug tab, Signing, and Resources tabs are self-
explanatory and provide us with a way to sign assemblies and support to embed resources
in our program.

Discussing code
We have gone through the console application and discussed what a typical console
application contains and how we can set various things using Visual Studio. Now let's
discuss our code, which was written in the previous section, Understanding a typical C#
program.

Console is a static class of a System namespace and it can't be inherited.

Day 02 - Getting Started with C#

[29]

In the said code, we instructed the program to write something to the console as an output
with the help of the WriteLine() method.

The official definition of Console class is as follows (https:/ ​/​docs. ​microsoft. ​com/ ​en-​us/
dotnet/​api/​system. ​console? ​view= ​netcore- ​2.​0):

Represents the standard input, output, and error streams for console applications. This
class cannot be inherited.

Console is nothing but an operating system's terminal-windows (also known as Console
User Interface (CUI))to interact with users. Windows operating system has console, that is,
Command Prompt that accepts MS-DOS commands. In this way, the Console class
provides basic support to achieve this.

Here are a few important operations we can do with the console.

Color
Console background and/or foreground color can be changed using setter and getter
properties that accept the value of the ConsoleColor enum. To set it to the default color,
there is a Reset method. Let's demonstrate all color combinations using the following code:

private static (int, int) DisplayColorMenu(ConsoleColor[] colors)
{
var count = 0;

foreach (var color in colors)
 {
 WriteLine($"{count}{color}");
 count += 1;
 }
WriteLine($"{count + 1} Reset");
WriteLine($"{count + 2} Exit");

Write("Choose Foreground color:");
var foreground = Convert.ToInt32(ReadLine());
Write("Choose Background color:");
var background = Convert.ToInt32(ReadLine());

return new ValueTuple<int, int>(background, foreground);
}

The preceding code is one snippet from the complete source code that is available on the
GitHub repository. The complete code will provide the following output:

https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-2.0

Day 02 - Getting Started with C#

[30]

Beep
Beep is the method that generates system sound through the console speaker. The
following is the simplest example:

private static void ConsoleBeepExample()
{
for (int i = 0; i < 9; i++)
Beep();
}

There are a few more methods that are helpful while working with the console application.
For more detail on these methods, refer to https:/ ​/​docs. ​microsoft. ​com/ ​en- ​us/​dotnet/
api/​system.​console? ​view= ​netcore- ​2. ​0.

Until now, we have discussed a typical C# program with the help of a code example using
Visual Studio 2017; we went through various sections of the console program and discussed
them. You can revisit this section once again or proceed with further reading.

https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-2.0

Day 02 - Getting Started with C#

[31]

An overview of C# reserved keywords,
types, and operators
Reserved keywords are nothing but predefined words that have special meaning for the
compilers. You cannot use these reserved keywords as normal text or identifiers unless you
explicitly tell the compiler that this word is not meant to reserve for the compiler.

In C#, you can use the reserved keyword as a normal word by prefixing
the @ symbol.

C# keywords are divided into the following categories:

Types: In C#, the typing system is divided into value type, reference type, and
pointer type.
Modifiers: As is self-explanatory from its name, modifiers are used to modify the
declaration of types and members of a specific type.
Statement keywords: These are programming instructions that execute in a
sequence.
Method parameters: These can be declared as a value type or a ref type and
values can be passed using out or ref keywords.
Namespace keywords: These are the keywords that belong to namespaces only.
Operator keywords: These operators are generally used to perform
miscellaneous operations, such as type checking, getting the size of the object,
and so on.
Conversion keywords: These are explicit, implicit, and operator
keywords, which will be discussed in the upcoming sections.
Access keywords: These are common keywords that help access things from a
class that belongs to its parent class or belongs to its own. These keywords are
this and base.
Literal keywords: Keywords have some values for assignment, which are null,
true, false , and default.
Contextual keywords: These are used as a specific meaning in the code. These
are special keywords that are not reserved keywords in C#.
Query keywords: These are contextual keywords that can be used in a query
expression, for instance, the from keyword can be used for LINQ.

In the upcoming sections, we will discuss C# keywords in more detail using code examples.

Day 02 - Getting Started with C#

[32]

Identifiers
These keywords are used in any part of the C# program and are reserved. Identifiers are
special keywords and are treated differently by the compiler.

These are the identifiers that are reserved by C#:

abstract: This informs you that things that come with the abstract modifier are yet
to complete or have a missing definition. We will discuss this in detail on day
four.
as: This can be used in a cast operation. In other words, we can say that this
checks the compatibility between two types.

The as keyword falls in the operator category of keywords; refer to
https:/ ​/​docs. ​microsoft. ​com/ ​en-​us/ ​dotnet/ ​csharp/ ​language-
reference/ ​keywords/ ​operator- ​keywords.

The following is the small code snippet that demonstrates the as identifier:

public class Stackholder
{
public void GetAuthorName(Person person)
 {
var authorName = person as Author;
Console.WriteLine(authorName != null ? $"Author is {authorName.Name}" :"No
author.");
 }

}

//Rest code is omitted

The preceding code snippet has a method that writes the name of an author to the console
window. With the help of the as operator, it is called by the following code:

private static void ExampleIsAsOperator()
{
WriteLine("isas Operator");
var author = new Author{Name = "Gaurav Aroraa"};

WriteLine("Author name using as:\n");
stackholder.GetAuthorName(author);

}

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/operator-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/operator-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/operator-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/operator-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/operator-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/operator-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/operator-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/operator-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/operator-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/operator-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/operator-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/operator-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/operator-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/operator-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/operator-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/operator-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/operator-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/operator-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/operator-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/operator-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/operator-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/operator-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/operator-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/operator-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/operator-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/operator-keywords

Day 02 - Getting Started with C#

[33]

This will produce the following result:

base: This is the access keyword and is used to access members of the parent
class from within derived classes. The following is the code snippet that shows
the usage of the base keyword. For more information, refer to https:/ ​/​docs.
microsoft. ​com/ ​en- ​us/ ​dotnet/ ​csharp/ ​language- ​reference/ ​keywords/ ​base

public class TeamMember :Person
{
public override string Name { get; set; }
public void GetMemberName()
 {
 Console.WriteLine($"Member name:{Name}");
 }
}

public class ContentMember :TeamMember
{
public ContentMember(string name)
 {
 base.Name = name;
 }
public void GetContentMemberName()
 {
 base.GetMemberName();
 }
}

This is a very simple example used to showcase the power of base. Here, we are just using
base class members and methods to get the expected output:

bool: This is an alias of structureSystem.Boolean that helps declare variables.
This has two values: true or false. We will discuss this in detail in the upcoming
section, Data types.
break: The keyword is self-explanatory; it breaks something within a particular
code execution, which could be a flow statement (for loop) or the termination of
a code block (switch). We will discuss this in detail in the upcoming section on
loop and statements.

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/base
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/base
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/base
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/base
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/base
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/base
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/base
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/base
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/base
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/base
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/base
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/base
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/base
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/base
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/base
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/base
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/base
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/base
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/base
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/base
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/base
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/base
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/base
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/base

Day 02 - Getting Started with C#

[34]

byte: This helps declare variables of an unsigned integer. This is an alias of
System.Byte. We will discuss this in detail in the upcoming section.
case: This is used with the Switch statement, which then tends to a code block of
execution based on some condition. We will discuss switch case on day three.
catch: This keyword is a catch block of exception handling blocks, that is,
try..catch..finally. We will discuss exception handling in detail on day six.
char: This keyword is useful when we declare a variable to store characters that
belong to structure System.Char. We will discuss this in detail in the data type
section.
checked: Sometimes, you might face overflow values in your program. Overflow
exception means that you assigned a larger value than the max value of the
assignee data type. The compiler raises the overflow exception and the program
terminates. The keyword checks force the compiler to make sure that overflow
will not happen to the scenario when the compiler misses it. To understand this
better, look at the following code snippet:

int sumWillthrowError = 2147483647 + 19; //compile time error

This will generate a compile-time error. As soon as you write the preceding statement, you
get the following error:

The following code snippet is a modified code, as shown in the preceding figure. With this
modification, the new code will not generate a compile-time error:

Private static void CheckOverFlowExample()
{
var maxValue = int.MaxValue;
var addSugar = 19;
var sumWillNotThrowError = maxValue + addSugar;
WriteLine($"sum value:{sumWillNotThrowError} is not the correct value
because it is larger than {maxValue}.");
}

Day 02 - Getting Started with C#

[35]

The preceding code will never throw an overflow exception, but it would not give the
correct sum; it gives -2147483647 as a result of 2147483647 + 19 because the actual sum will
exceed the maximum positive value of an integer, that is, 2147483647. It will produce the
following output:

In real-world programs, we can't take a risk with wrong calculations. We should use the
checked keyword to overcome such situations. Let's rewrite the preceding code using
checked keywords:

private static void CheckOverFlowExample()
{
const int maxValue = int.MaxValue;
const int addSugar = 19;
var sumWillNotThrowError = checked(maxValue+addSugar); //compile time error
WriteLine(
$"sum value:{sumWillNotThrowError} is not the correct value because it is
larger than {maxValue}.");
}

As soon as you write the code using the checked keyword, you will see the following
compile-time error:

Now let's discuss more keywords of C#:

class: This keyword helps us declare classes. A C# class would contain members,
methods, variables, fields, and so on (we will discuss these in detail on day four).
Classes are different from structures; we will discuss this in detail in the Classes
versus structures section.
const: This keyword helps us declare constant fields or constant locals. We will
discuss this in detail on day three.

Day 02 - Getting Started with C#

[36]

continue: This keyword is the opponent of break. It passes control to the next
iteration in the flow statements, that is, while, do, for, and foreach. We will
discuss this in detail in the upcoming sections.
decimal: This helps us declare a data type of 128-bit. We will discuss this in detail
in the Data types section.
default: This is the keyword that tells us the default condition in a switch
statement. We can also use the default as a literal to get the default values; we
will discuss this on day three.
delegate: This helps declare a delegate type that is similar to method signature.
We will discuss this in detail on day six.
do: This executes a statement repeatedly until it meets the expression condition of
false. We will discuss this in the upcoming section.
double: This helps declare simple 64-bit floating point values. We will discuss
this in detail in the upcoming section.
else: This comes with the if statement and executes the code statement that does
not fall within the if condition. We will discuss this in detail in the coming
section.
enum: This helps create enumerations. We will discuss this on day four.
event: This helps declare an event in a publisher class. We will discuss this in
detail on day six.
explicit: This is one of the conversion keywords. This keyword declares a user-
defined type conversion operator. We will discuss this in detail in the upcoming
section.
false: A bool value indicates the false condition, result, or Operator. We will
discuss this in detail in the upcoming sections.
finally: This is a part of exception handling blocks. Finally, a block is always
executed. We will discuss this in detail on day four.
fixed: This is used in unsafe code and is helpful in preventing GC allocation or
relocation. We will discuss this in detail on day six.
float: This is a simple data type that stores a 32-bit floating point value. We will
discuss this in detail in the upcoming section.
for: The for keyword is a part of flow statements. With the use of the for loop,
you can run a statement repeatedly until a specific expression is reached. We will
discuss this in detail in the upcoming section.
foreach: This is also a flow statement, but it works only on elements for
collections or arrays. This can be exited using the goto, return, break, and
throw keywords. We will discuss this in detail in the upcoming section.

Day 02 - Getting Started with C#

[37]

goto: This redirects the control to another part with the help of a label. In C#, goto
is typically used with the switch..case statement. We will discuss this in detail
in the upcoming sections.
if: This is a conditional statement keyword. It typically comes with the
if...else statement. We will discuss this in detail in the upcoming sections.
implicit: Similar to the explicit keyword, this helps declare an implicit user-
defined conversion. We will discuss this in detail in the upcoming sections.
in: A keyword helps detect the collection from where we need to iterate through
members in the foreach loop. We will discuss this in detail in the upcoming
sections.
int: This is an alias of structure System.Int32 and a data type that stores signed
32-bit integer values. We will discuss this in detail in the upcoming sections.
interface: This keyword helps declare an interface that can only contain methods,
properties, events, and indexers (we will discuss this on day four).
internal: This is an access modifier. We will discuss this in detail on day four.
is: Similar to the as operator, is is also a keyword operator.

This is a code example showing the is operator:

public void GetStackholdersname(Person person)
{
if (person is Author)
 {
 Console.WriteLine($"Author name:{((Author)person).Name}");
 }
elseif (person is Reviewer)
 {
 Console.WriteLine($"Reviewer name:{((Reviewer)person).Name}");
 }
elseif(person is TeamMember)
 {
 Console.WriteLine($"Member name:{((TeamMember)person).Name}");
 }
else
 {
 Console.Write("Not a valid name.");
 }

}

Day 02 - Getting Started with C#

[38]

For complete explanation of is and as operators, refer to https:/ ​/​goo. ​gl/ ​4n73JC.

lock: This represents a critical section of the code block. With the use of the lock
keyword, we will get a mutual exclusion lock of an object, and it will get released
after execution of the statement. This generally comes with the use of threading.
Threading is beyond the scope of this book. For more details, refer to https:/ ​/
docs.​microsoft. ​com/ ​en- ​us/ ​dotnet/ ​csharp/ ​language- ​reference/ ​keywords/
lock-​statement and https:/ ​/​docs. ​microsoft. ​com/​en- ​us/ ​dotnet/ ​csharp/
programming- ​guide/ ​concepts/ ​threading/ ​index.
long: This helps declare variables to store signed 64-bit integers values, and it
refers to structure System.Int64. We will discuss this in detail in the upcoming
sections.
namespace: This helps define namespaces that declare a set of related objects. We
will discuss this in details on day four.
new: The new keyword can be an operator, a modifier, or a constraint. We will
discuss this in detail on day four.
null: This represents a null reference. It does not refer to any object. The default
value of reference type is null. This is helpful while working with nullable types.
object: This is an alias of System.Object, the universal type in .NET world. It
accepts any data type instead of null.
operator: This helps overload the built-in operator. We will discuss this in detail
in the upcoming sections..
out: This is a contextual keyword and will be discussed in detail on day four.
override: This keyword helps override or extend the implementation of abstract
or virtual members, methods, properties , indexer, or event. We will discuss this
in detail on day four.
params: This helps define method parameters with a variable number of
arguments. We will discuss this in detail on day four.
private: This is an access modifier and will be discussed on day four.
protected: This is an access modifier and will be discussed on day four.
public: This is an access modifier that sets the availability through the application
and will be discussed on day four.
readonly: This helps us declare field declaration as read-only. We will discuss
this in detail on day four.
ref: This helps pass values by reference. We will discuss this in detail on day four.
return: This helps terminate the execution of a method and returns the result for
the calling method. We will discuss this in detail on day four.

https://goo.gl/4n73JC
https://goo.gl/4n73JC
https://goo.gl/4n73JC
https://goo.gl/4n73JC
https://goo.gl/4n73JC
https://goo.gl/4n73JC
https://goo.gl/4n73JC
https://goo.gl/4n73JC
https://goo.gl/4n73JC
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/lock-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/lock-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/lock-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/lock-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/lock-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/lock-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/lock-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/lock-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/lock-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/lock-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/lock-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/lock-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/lock-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/lock-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/lock-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/lock-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/lock-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/lock-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/lock-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/lock-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/lock-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/lock-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/lock-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/lock-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/lock-statement
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/threading/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/threading/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/threading/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/threading/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/threading/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/threading/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/threading/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/threading/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/threading/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/threading/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/threading/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/threading/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/threading/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/threading/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/threading/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/threading/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/threading/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/threading/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/threading/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/threading/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/threading/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/threading/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/threading/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/threading/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/threading/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/threading/index

Day 02 - Getting Started with C#

[39]

sbyte: This denotes System.SByte and stores signed 8-bit integer values. We
will discuss this in detail in the upcoming sections.
sealed: This is a modifier that prevents further usage/extension. We will discuss
this in detail on day four.
short: This denotes System.Int16 and stores signed 16-bit integer values. We
will discuss this in detail in the upcoming sections.
sizeof: This helps get the size in bytes of the inbuilt type and/or unmanaged type.
For unmanaged and all other types apart from inbuilt data types, the unsafe
keyword is required.
The following code is explained sizeof using built-in types:

private static void SizeofExample()
{
WriteLine("Various inbuilt types have size as mentioned below:\n");
WriteLine($"The size of data type int is: {sizeof(int)}");
WriteLine($"The size of data type long is: {sizeof(long)}");
WriteLine($"The size of data type double is: {sizeof(double)}");
WriteLine($"The size of data type bool is: {sizeof(bool)}");
WriteLine($"The size of data type short is: {sizeof(short)}");
WriteLine($"The size of data type byte is: {sizeof(byte)}");
}

The preceding code produces the following output:

Let's discuss more C# keywords; these keywords are very important and play a vital role
while writing real-world programs:

static: This helps us declare static members and will be discussed in detail on day
four.
string: This helps store unicode characters. It is a reference type. We will be
discussing this in more detail in the upcoming section, String.

Day 02 - Getting Started with C#

[40]

struct: This helps us declare a struct type. Struct type is a value type. We will be
discussing this in more detail in the upcoming section, Classes versus. structs.
switch: This helps declare a switch statement. Switch is a selection statement,
and we will be discussing it on day three.
this: This this keyword helps us access the members of the current instance of a
class. It is also a modifier and we will be discussing on day four. Note that the
this keyword has a special meaning for the extension method. Extension
methods are beyond the scope of this book; refer to https:/ ​/​docs. ​microsoft.
com/​en- ​us/ ​dotnet/ ​csharp/ ​programming- ​guide/ ​classes- ​and- ​structs/
extension- ​methods for more detail.
throw: This helps throw a system or custom exceptions. We will be discussing
this in detail on day six.
true: Similar to false, we discussed this earlier. It represents a Boolean value and
can be a literal or operator. We will discuss this in more detail in the upcoming
section.
try: This represents a try block of exception handling. Try block is one of the
other three blocks that helps handle any unavoidable errors or instances of
programs. All three blocks are jointly called exceptional handling blocks. The try
block always comes first. This block contains the code that could throw an
exception. We will discuss this in more detail on day six.
typeof: This helps get the type object for a desired type. Also, at runtime, you can
get the type of object with the help of the GetType() method.

The following code snippet shows the typeof() method in action:

private static void TypeofExample()
{
var thisIsADouble = 30.3D;
WriteLine("using typeof()");
WriteLine($"System.Type Object of {nameof(Program)} is
{typeof(Program)}\n");
var objProgram = newProgram();
WriteLine("using GetType()");
WriteLine($"Sytem.Type Object of {nameof(objProgram)} is
{objProgram.GetType()}");
WriteLine($"Sytem.Type Object of {nameof(thisIsADouble)} is
{thisIsADouble.GetType()}");
}

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/extension-methods
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/extension-methods
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/extension-methods
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/extension-methods
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/extension-methods
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/extension-methods
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/extension-methods
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/extension-methods
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/extension-methods
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/extension-methods
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/extension-methods
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/extension-methods
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/extension-methods
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/extension-methods
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/extension-methods
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/extension-methods
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/extension-methods
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/extension-methods
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/extension-methods
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/extension-methods
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/extension-methods
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/extension-methods
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/extension-methods
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/extension-methods
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/extension-methods
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/extension-methods
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/extension-methods
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/extension-methods
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/extension-methods

Day 02 - Getting Started with C#

[41]

The preceding code will generate the following result:

These are the unsigned data types, and these data types store values without sign (+/-):

uint: This helps declare a variable of an unsigned 32-bit integer. We will be
discussing this in detail in the upcoming section.
ulong: This helps declare a variable of an unsigned 65-bit integer. We will be
discussing this in detail in the upcoming section.
unchecked: This keyword works exactly opposite to checked. The code block that
threw a compile-time error with the use of the checked keyword will not generate
any compile-time exception with the use of the unchecked keyword.
Let's rewrite the code that we wrote using the checked keyword and see how the
unchecked keyword works exactly opposite to checked:

private static void CheckOverFlowExample()
{
const int maxValue = int.MaxValue;
const int addSugar = 19;
//int sumWillthrowError = 2147483647 + 19; //compile time error
var sumWillNotThrowError = unchecked(maxValue+addSugar);
//var sumWillNotThrowError = checked(maxValue + addSugar);
//compile time error
WriteLine(
$"sum value:{sumWillNotThrowError} is not the correct value
because it is larger than {maxValue}.");
}

The preceding code will run smoothly but will give the wrong result, that is, -2147483647.

You can find more detail on the checked and unchecked keywords by referring to https:/ ​/
docs.​microsoft.​com/ ​en- ​us/ ​dotnet/ ​csharp/ ​language- ​reference/ ​keywords/ ​checked. ​

unsafe: This helps execute an unsafe code block that generally uses pointers. We
will be discussing this in detail on day six.
ushort: This helps declare a variable of an unsigned 16-bit integer. We will be
discussing this in more detail in the upcoming section, Data types.

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/checked
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/checked
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/checked
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/checked
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/checked
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/checked
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/checked
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/checked
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/checked
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/checked
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/checked
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/checked
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/checked
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/checked
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/checked
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/checked
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/checked
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/checked
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/checked
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/checked
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/checked
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/checked
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/checked
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/checked
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/checked

Day 02 - Getting Started with C#

[42]

using: The using keyword works like a directive or statement. Let's consider the
following code example:

using System;

The preceding directive provides everything that belongs to the System namespace:

using static System.Console;

The preceding directive helps us call static members. After inclusion of the preceding
directive in the program, we can directly call static members, methods, and so on, as shown
in the following code:

Console.WriteLine("This WriteLien is without using static directive");
WriteLine("This WriteLien is called after using static directive");

In the preceding code snippet, in first statement, we called Console.WriteLine, but in the
second statement, there is no need to write the class name, so we can directly call the
WriteLine method.

On the other hand, the using statement helps us perfectly use the IDisposable classes.
The following code snippet tells us how a using statement is helpful while we are working
with disposable classes (these classes use the IDisposable interface):

public class DisposableClass : IDisposable
{
public string GetMessage()
 {
 return"This is from a Disposable class.";
 }
protected virtual void Dispose(bool disposing)
 {
 if (disposing)
 {
 //disposing code here
 }
 }

public void Dispose()
 {
 Dispose(true);
 GC.SuppressFinalize(this);
 }
}
private static void UsingExample()
{
using (var disposableClass = new DisposableClass())

Day 02 - Getting Started with C#

[43]

 {
 WriteLine($"{disposableClass.GetMessage()}");
 }
}

The preceding code produces the following output:

C# keywords virtual and void have a special meaning: one allows the other to override it,
while the other is a used as a return type when the method returns nothing. Let's discuss
both in detail:

virtual: If the virtual keyword is used, it means that it allows methods,
properties, indexers, or events to override in a derived class. We will be
discussing this in more detail on day four.
void: This is an alias of the System.Void type. When void uses the method, it
means the method does not have any return type. For instance, take a look at the
following code snippet:

public void GetAuthorName(Person person)
{
var authorName = person as Author;
Console.WriteLine(authorName != null ? $"Author is {authorName.Name}" :"No
author.");
}

In the preceding code snippet, the getAuthorName() method is of void type; hence, it
does not return anything.

while: While is a flow statement that executes the specific code block until a
specified expression evaluates false. We will be discussing this in more detail in
the upcoming section, Flow statements.

Contextual
These are not reserved keywords, but they have a special meaning for a limited context of a
program and can also be used as an identifier outside that context.

Day 02 - Getting Started with C#

[44]

These are the contextual keywords of C#:

add: This is used to define a custom accessor and it invokes when someone
subscribes to an event. The add accessors are always followed by the remove
accessors, which means when we provide the add accessor, the remove accessor
should be applied thereon. For more information, refer to https:/ ​/​docs.
microsoft. ​com/ ​en- ​us/ ​dotnet/ ​csharp/ ​programming- ​guide/ ​events/ ​how- ​to-
implement- ​interface- ​events.
ascending/descending: This contextual keyword is used with an orderby clause
in a LINQ statement. We will discuss this in more detail on day six.
async: This is used for an asynchronous method, lambda expression, or
anonymous method. To get the result from asynchronous methods, the await
keyword is used. We will be discussing this in more detail on day six.
dynamic: This helps us bypass the compile-time type checking. This resolves
types at runtime.

Compile time type is what you used to define a variable. Runtime type
refers to the actual type to which a variable belongs.
Let's look at the following code in order to understand these terms better:

internal class Parent
{
//stuff goes here
}
internal class Child : Parent
{
//stuff goes here
}

We can create an object of our child class like this:

Parent myObject = new Child();

Here, compile-time type for myObject is Parent as the compiler knows the variable is a
type of Parent without caring or knowing about the fact that we are instantiate this object
with type Child. Hence this is a compile-time type. Runtime type is the actual type that is
Child in our example. Hence, runtime type of our variable myObject is Child.

Take a look at the following code snippet:

private static void DynamicTypeExample()
{

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/how-to-implement-interface-events
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/how-to-implement-interface-events
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/how-to-implement-interface-events
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/how-to-implement-interface-events
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/how-to-implement-interface-events
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/how-to-implement-interface-events
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/how-to-implement-interface-events
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/how-to-implement-interface-events
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/how-to-implement-interface-events
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/how-to-implement-interface-events
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/how-to-implement-interface-events
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/how-to-implement-interface-events
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/how-to-implement-interface-events
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/how-to-implement-interface-events
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/how-to-implement-interface-events
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/how-to-implement-interface-events
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/how-to-implement-interface-events
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/how-to-implement-interface-events
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/how-to-implement-interface-events
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/how-to-implement-interface-events
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/how-to-implement-interface-events
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/how-to-implement-interface-events
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/how-to-implement-interface-events
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/how-to-implement-interface-events
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/how-to-implement-interface-events
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/how-to-implement-interface-events
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/how-to-implement-interface-events
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/how-to-implement-interface-events
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/how-to-implement-interface-events
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/how-to-implement-interface-events
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/how-to-implement-interface-events

Day 02 - Getting Started with C#

[45]

dynamic dynamicInt = 10;
dynamic dynamicString = "This is a string";
object obj = 10;
WriteLine($"Run-time type of {nameof(dynamicInt)} is
{dynamicInt.GetType()}");
WriteLine($"Run-time type of {nameof(dynamicString)} is
{dynamicString.GetType()}");
WriteLine($"Run-time type of {nameof(obj)} is {obj.GetType()}");

}

The above code produces following output:

For more information, refer: https:/ ​/ ​docs. ​microsoft. ​com/ ​en-​us/ ​dotnet/ ​csharp/
language-​reference/ ​keywords/ ​dynamic.

These are the contextual keywords that are used in query expressions; let's discuss these
keywords in detail:

from: This uses the in query expression and will be discussed on day six.
get: This defines the accessor and is used along with properties for the retrieval of
values. We will be discussing this in more detail on day six.
group: This is used with a query expression and returns a sequence of
IGroupong<Tkey,TElement> objects. We will discuss this in more detail on day
six.
into: This identifier helps store temporary data while working with query
expressions. We will discuss this in more detail on day six.

For more information on contextual keywords, refer to https:/ ​/​docs. ​microsoft. ​com/ ​en-
us/​dotnet/​csharp/ ​language- ​reference/ ​keywords.

Types
In C#, 7.0 types are also known as data types and variables. These are categorized into the
following broader categories.

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/dynamic
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/dynamic
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/dynamic
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/dynamic
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/dynamic
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/dynamic
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/dynamic
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/dynamic
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/dynamic
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/dynamic
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/dynamic
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/dynamic
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/dynamic
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/dynamic
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/dynamic
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/dynamic
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/dynamic
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/dynamic
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/dynamic
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/dynamic
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/dynamic
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/dynamic
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/dynamic
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/dynamic
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords

Day 02 - Getting Started with C#

[46]

Value type
These are derived from the System.ValueType class. Variables of the value type directly
contains their data or, in simple words, the value type variable can be assigned directly.
Value types can be divided into more sub categories: data types, custom types (Enum types
and Struct types). In this section, we will discuss the data types in detail. Enum will be
discussed on day four and struct will be discussed in the upcoming sections.

Data types
These are also famous as compliant value types, simple value types, and basic value types. I
call these data types because of their power to define the nature of values. The following
table contains all value types:

Nature Type CLR Type Range Default
Value

Size

Signed Integer sbyte System.SByte -128 to 127 0 8 bit

short System.Short -32,768 to 32,767 0 16 bit

int System.Int32 -2,147,483,648 to
2,147,483,647

0 32 bit

long System.Int64 -9,223,372,036,854,775,808
to
9,223,372,036,854,775,807

0L 64 bit

Unsigned
Integer

byte System.Byte 0 to 255 0 8 bit

ushort System.UInt16 0 to 65,535 0 16 bit

uint System.UInt32 0 to 4,294,967,295 0 32 bit

ulong System.UInt64 0 to
18,446,744,073,709,551,615

0 64 bit

Unicode
Character

char System.Char U +0000 to U +ffff '\0' 16 bit

Floating point float System.Float -3.4 x 1038 to + 3.4 x 1038 0.0F 32 bit

double System.Double (+/-)5.0 x 10-324 to (+/-)1.7 x
10308

0.0D 64 bit

Day 02 - Getting Started with C#

[47]

Higher-precision
decimal

decimal System.Decimal (-7.9 x 1028 to 7.9 x 1028) /
100 to 28

0.0M 128 bit

Boolean bool System.Boolean True or False False Boolean
value

We can prove the values mentioned in the preceding table with the help of the following
code snippet:

//Code is omitted
public static void Display()
{
WriteLine("Table :: Data Types");
var dataTypes = DataTypes();
WriteLine(RepeatIt('\u2500', 100));
WriteLine("{0,-10} {1,-20} {2,-50} {3,-5}", "Type", "CLR Type", "Range",
"Default Value");
WriteLine(RepeatIt('\u2500', 100));
foreach (var dataType in dataTypes)
WriteLine("{0,-10} {1,-20} {2,-50} {3,-5}", dataType.Type,
dataType.CLRType, dataType.Range,
dataType.DefaultValue);
WriteLine(RepeatIt('\u2500', 100));
}
//Code is omitted

In the preceding code, we are displaying maximum and minimum values of data types,
which produces the following output:

Day 02 - Getting Started with C#

[48]

Reference type
The actual data is not stored in the variable but it contains reference to variables. In simple
words, we can say that the reference type refers to a memory location. Also, multiple
variables can refer to one memory location, and if any of these variables change the data to
that location, all the variables would get the new values. Here are the built-in reference
types:

class type: A data structure that contains members, methods, properties, and so
on. This is also called the object type as this inherits the universal
classSystem.Object. In C# 7.0, class type supports single inheritance; we will
discuss this in more detail on day seven.

The object type can be assigned a value of any other type; an object is
nothing but an alias of System.Object. In this context, any other type is
meant to be a value type, reference type, predefined type, and user-
defined type.

There is a concept called boxing and unboxing that happens once we deal with an object
type. In general, whenever value type is converted into the object type, it is called boxing,
and when object type is converted into a value type, it is called unboxing.

Take a look at the following code snippet:

private static void BoxingUnboxingExample()
{
int thisIsvalueTypeVariable = 786;
object thisIsObjectTypeVariable = thisIsvalueTypeVariable; //Boxing
thisIsvalueTypeVariable += 1;
 WriteLine("Boxing");
WriteLine($"Before boxing: Value of {nameof(thisIsvalueTypeVariable)}:
{thisIsvalueTypeVariable}");
WriteLine($"After boxing: Value of {nameof(thisIsObjectTypeVariable)}:
{thisIsObjectTypeVariable}");

thisIsObjectTypeVariable = 1900;
thisIsvalueTypeVariable = (int) thisIsObjectTypeVariable; //Unboxing
 WriteLine("Unboxing");
WriteLine($"Before Unboxing: Value of {nameof(thisIsObjectTypeVariable)}:
{thisIsObjectTypeVariable}");
WriteLine($"After Unboxing: Value of {nameof(thisIsvalueTypeVariable)}:
{thisIsvalueTypeVariable}");
 }

Day 02 - Getting Started with C#

[49]

In the preceding code snippet, we defined boxing and unboxing, where boxing happened
when a value type thisIsvalueTypeVariable variable is assigned to an object
thisIsObjectTypeVariable. On the other hand, unboxing happened when we cast
object variable thisIsObjectTypeVariable to our value type
thisIsvalueTypeVariable variable with int. This is the output of the code:

Here, we are going to discuss three important types, which are interface, string, and
delegate type:

interface type: This type is basically a contract that is meant to be implemented
by whoever is going to use it. A class or struct may use one or more interface
types. One interface type may be inherited from multiple other interface types.
We will discuss this in more details on day seven.
delegate type: This is a type that represents a reference to a method of a
parameter list. Famously, delegates are known as function pointers (as defined in
C++). Delegates are type- safe. We will discuss this in detail on day four.
string type: This is an alias of System.String. This type allows you to assign
any string value to variables. We will discuss this in detail in the upcoming
sections.

Pointer type
This type belongs to unsafe code. The variable defined as a pointer type stores the memory
address of another variable. We will discuss this in details on day six.

Day 02 - Getting Started with C#

[50]

Null type
Nullable types are nothing but an instance of the System.Nullable<T> struct. The
nullable type contains the same data range as that of its ValueType but with addition to a
null value. Refer to the data type table where int has a range of 2147483648 to 2147483647
but System.Nullable<int> or int? has the same range in addition to null. This means
you can do this: int? nullableNum = null;.

For more detail on nullable types, refer to https:/ ​/​docs. ​microsoft. ​com/ ​en- ​us/​dotnet/
csharp/​programming- ​guide/ ​nullable- ​types/ ​.

Operators
In C#, operators are nothing but mathematical or logical operators that tell the compiler to
perform a specific operation. For instance, a multiplication (*) operator tells the compiler to
multiply; on the other hand, the logical and (&&) operator checks both the operands. We
can divide C# operators into broader types, as shown in the following table:

Type Operator Description

Arithmetic
operators

+ Adds two operands, for example, var result = num1
+num2;

- Subtracts second operand from first operand, for example, var
result = num1 - num2;

* Multiplies both operands, for example, var result = num1 *
num2;

/ Divides the numerator by the denominator, for example, var
result = num1 / num2;

% Modulus, for example, result = num1 % num2;

++ Incremental operator that increases the value by 1. , for example,
var result = num1++;

-- Decrement operator that decreases the value by 1, for example,
var result = num1--;

Relational
operators

== Determines whether the two operands are of the same value. It
returns True if the expression is successful; otherwise it returns
false, for example, var result = num1 == num2;

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/nullable-types/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/nullable-types/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/nullable-types/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/nullable-types/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/nullable-types/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/nullable-types/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/nullable-types/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/nullable-types/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/nullable-types/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/nullable-types/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/nullable-types/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/nullable-types/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/nullable-types/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/nullable-types/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/nullable-types/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/nullable-types/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/nullable-types/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/nullable-types/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/nullable-types/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/nullable-types/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/nullable-types/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/nullable-types/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/nullable-types/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/nullable-types/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/nullable-types/

Day 02 - Getting Started with C#

[51]

!= Performs the same as == but negates the comparison; if two
operands are equal, it returns false, for example, var result =
num1 != num2;

> Determines whether in expression, the left operand is greater
than the right operand and returns True on success, for example,
var result = num1 > num2;

< Determines whether in expression, the left operand is less than
the right operand and returns true on success, for example, var
result = num1 < num2;

>= Determines whether in expression, the value of the left operand
is greater than or equal to the value of the right operand and
returns true on success, for example, var result = num1 <=
num2;

<= Determines whether in expression, the value of the left operand
is less than or equal to the value of the right operand and returns
true on success, for example, var result = num1 <= num2;

Logical
operators

&& This is a logical AND operator. Expression evaluates on the basis
of the left operand; if it's true, then the right operand would not
be ignored, for example, var result = num1 && num2;

|| This is a logical OR operator. Expression evaluates to true if any
of the operands is true, for example, var result = num1 ||
num2;

! This is called the logical NOT operator. It reverses the evaluation
result, for example, var result = !(num1 && num2);

Bitwise
operators

| This is a bitwise OR operator and works on bits. If either of the
bits is 1, the result will be 1, for example, var result = num1
| num2;

& This is a bitwise AND operator and works on bits. If either of the
bits is 0, then the result is 0; otherwise, it's 1, for example, var
result = num1 & num2;

^ This is a bitwise XOR operator and works on bits. If bits are the
same, the result is 0; otherwise, it's 1, for example, var result
= num1 ^ num2;

Day 02 - Getting Started with C#

[52]

~ This is a unary operator and is called a bitwise COMPLEMENT
operator. This works on a single operand and reverses the bit,
which means if the bit is 0, then it returns 1 and vice- versa, for
example, var result = ~num1;

<< This is a bitwise left shift operator and shifts a number to the left
by the number of bits specified in the expression and adds the
zeros to the least significant bits, for example, var result =
num1 << 1;

>> This is a bitwise right shift operator and shifts a number to the
right by the number of bits specified in the expression, for
example, var result = num1 >> 1;

Assignment
operators

= The assignment operator that assigns values from right-hand
side to the left-hand side operand, for example, var result =
nim1 + num2;

+= The add and assign operator; It adds and assigns values of the
right operands to the left operands, for example, result +=
num1;

-= The subtract and assign operator; It subtracts and assigns values
of the right operands to the left operands, for example, result
-= num1;

*= The multiply and assign operator; It multiplies and assigns
values of the right operands to the left operands, for example,
result *= num1;

/= The divide and assign operator; It divides and assigns values of
the right operands to the left operands, for example, result /=
num1;

%= The modulus and assign operator; It takes modulus of the left
and right operands and assigns value to the left operands, for
example, result %= num1;

<<= Bitwise left shifts and assignment, for example, result <<= 2;

>>;= Bitwise right shifts and assignment, for example, result >>=
2;

&= Bitwise AND and assignment operator, for example,. result &=
Num1;

Day 02 - Getting Started with C#

[53]

^= Bitwise XOR and assignment operator, for example, result ^=
num1;

|= Bitwise OR and assignment operator, for example, result |=
num1;

Take a look at the following code snippet, which implements all operators discussed
previously:

private void ArithmeticOperators()
{
WriteLine("\nArithmetic operators\n");
WriteLine($"Operator '+' (add): {nameof(Num1)} + {nameof(Num2)} = {Num1 +
Num2}");
WriteLine($"Operator '-' (substract): {nameof(Num1)} - {nameof(Num2)} =
{Num1 - Num2}");
WriteLine($"Operator '*' (multiplication): {nameof(Num1)} * {nameof(Num2)}
= {Num1 * Num2}");
WriteLine($"Operator '/' (division): {nameof(Num1)} / {nameof(Num2)} =
{Num1 / Num2}");
WriteLine($"Operator '%' (modulus): {nameof(Num1)} % {nameof(Num2)} = {Num1
% Num2}");
WriteLine($"Operator '++' (incremental): pre-increment: ++{nameof(Num1)} =
{++Num1}");
WriteLine($"Operator '++' (incremental): post-increment: {nameof(Num1)}++ =
{Num1++}");
WriteLine($"Operator '--' (decremental): pre-decrement: --{nameof(Num2)} =
{--Num2}");
WriteLine($"Operator '--' (decremental): post-decrement: {nameof(Num2)}-- =
{Num2--}");
ReadLine();
}
//Code omitted

Day 02 - Getting Started with C#

[54]

The complete code is available on the GitHub repository, and it produces the following
results:

Day 02 - Getting Started with C#

[55]

Discussing operator precedence in C#
The calculation or evaluation of any expression and the order of operators is very
important. This is what is called operator precedence. We have all read the mathematic rule
Order of Operator, which is abbreviated as BODMAS. Refer to https:/ ​/​www. ​skillsyouneed.
com/​num/​bodmas.​html to refresh your memory. So, mathematics teaches us how to solve an
expression; in a similar way, our C# should follow rules to solve or evaluate the expression.
For instance, 3+2*5 evaluates as 13 and not 25. So, in this equation, the rule is to first
multiply and then add. That's why it evaluates as 2*5 = 10 and then 3+10 = 13. You can set a
higher precedence order by applying braces, so if you do this in the preceding statement
(3+2)*5, it results in 25.

To know more about operator precedence, refer to https:/ ​/ ​msdn.
microsoft. ​com/ ​en- ​us/ ​library/ ​aa691323(VS. ​71). ​aspx.

This is a simple code snippet to evaluate the expression:

private void OperatorPrecedence()
{
Write("Enter first number:");
 Num1 = Convert.ToInt32(ReadLine());
Write("Enter second number:");
 Num2 = Convert.ToInt32(ReadLine());
Write("Enter third number:");
 Num3 = Convert.ToInt32(ReadLine());
Write("Enter fourth number:");
 Num4 = Convert.ToInt32(ReadLine());
int result = Num1 + Num2 * Num3/Num4;
WriteLine($"Num1 + Num2 * Num3/Num4 = {result}");
 result = Num1 + Num2 * (Num3 / Num4);
WriteLine($"Num1 + Num2 * (Num3/Num4) = {result}");
 result = (Num1 + (Num2 * Num3)) / Num4;
WriteLine($"(Num1 + (Num2 * Num3)) /Num4 = {result}");
 result = (Num1 + Num2) * Num3 / Num4;
WriteLine($"(Num1 + Num2) * Num3/Num4 = {result}");
ReadLine();
}

https://www.skillsyouneed.com/num/bodmas.html
https://www.skillsyouneed.com/num/bodmas.html
https://www.skillsyouneed.com/num/bodmas.html
https://www.skillsyouneed.com/num/bodmas.html
https://www.skillsyouneed.com/num/bodmas.html
https://www.skillsyouneed.com/num/bodmas.html
https://www.skillsyouneed.com/num/bodmas.html
https://www.skillsyouneed.com/num/bodmas.html
https://www.skillsyouneed.com/num/bodmas.html
https://www.skillsyouneed.com/num/bodmas.html
https://www.skillsyouneed.com/num/bodmas.html
https://www.skillsyouneed.com/num/bodmas.html
https://www.skillsyouneed.com/num/bodmas.html
https://www.skillsyouneed.com/num/bodmas.html
https://msdn.microsoft.com/en-us/library/aa691323(VS.71).aspx
https://msdn.microsoft.com/en-us/library/aa691323(VS.71).aspx
https://msdn.microsoft.com/en-us/library/aa691323(VS.71).aspx
https://msdn.microsoft.com/en-us/library/aa691323(VS.71).aspx
https://msdn.microsoft.com/en-us/library/aa691323(VS.71).aspx
https://msdn.microsoft.com/en-us/library/aa691323(VS.71).aspx
https://msdn.microsoft.com/en-us/library/aa691323(VS.71).aspx
https://msdn.microsoft.com/en-us/library/aa691323(VS.71).aspx
https://msdn.microsoft.com/en-us/library/aa691323(VS.71).aspx
https://msdn.microsoft.com/en-us/library/aa691323(VS.71).aspx
https://msdn.microsoft.com/en-us/library/aa691323(VS.71).aspx
https://msdn.microsoft.com/en-us/library/aa691323(VS.71).aspx
https://msdn.microsoft.com/en-us/library/aa691323(VS.71).aspx
https://msdn.microsoft.com/en-us/library/aa691323(VS.71).aspx
https://msdn.microsoft.com/en-us/library/aa691323(VS.71).aspx
https://msdn.microsoft.com/en-us/library/aa691323(VS.71).aspx
https://msdn.microsoft.com/en-us/library/aa691323(VS.71).aspx
https://msdn.microsoft.com/en-us/library/aa691323(VS.71).aspx
https://msdn.microsoft.com/en-us/library/aa691323(VS.71).aspx
https://msdn.microsoft.com/en-us/library/aa691323(VS.71).aspx

Day 02 - Getting Started with C#

[56]

The preceding code produces the following results:

Operator overloading
Operator loading is a way to redefine the actual functionality of a particular operator. This
is important when you're working with user-defined complex types, where the direct use of
in-built operators is impossible. For instance, say, you have an object with numerous
properties and you want an addition of two for these types of objects. It is not possible like
this: VeryComplexObject = result = verycoplexobj1 + verycomplexobj2;. To
overcome such a situation, overloading does the magic.

You cannot overload all inbuilt operators; refer to https:/ ​/​docs.
microsoft. ​com/ ​en- ​us/ ​dotnet/ ​csharp/ ​programming- ​guide/ ​statements-
expressions- ​operators/ ​overloadable- ​operators to see what operators
are overloadable.

Let's consider the following code snippet to see how operator loading works (note that this
code is not complete; refer to Github for the complete source code):

public struct Coordinate
{
//code omitted

public static Coordinateoperator +(Coordinate coordinate1, Coordinate
coordinate2) =>;
new Coordinate(coordinate1._xAxis + coordinate2._xAxis, coordinate1._yAxis
+ coordinate2._yAxis);
public static Coordinateoperator-(Coordinate coordinate1, Coordinate
coordinate2) =>
new Coordinate(coordinate1._xAxis - coordinate2._xAxis, coordinate1._yAxis
- coordinate2._yAxis);
public static Coordinateoperator *(Coordinate coordinate1, Coordinate
coordinate2) =>
new Coordinate(coordinate1._xAxis * coordinate2._xAxis, coordinate1._yAxis

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/overloadable-operators
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/overloadable-operators
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/overloadable-operators
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/overloadable-operators
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/overloadable-operators
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/overloadable-operators
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/overloadable-operators
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/overloadable-operators
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/overloadable-operators
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/overloadable-operators
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/overloadable-operators
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/overloadable-operators
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/overloadable-operators
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/overloadable-operators
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/overloadable-operators
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/overloadable-operators
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/overloadable-operators
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/overloadable-operators
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/overloadable-operators
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/overloadable-operators
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/overloadable-operators
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/overloadable-operators
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/overloadable-operators
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/overloadable-operators
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/overloadable-operators
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/overloadable-operators
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/overloadable-operators
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/overloadable-operators
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/overloadable-operators

Day 02 - Getting Started with C#

[57]

* coordinate2._yAxis);
//code omitted

public static booloperator ==(Coordinate coordinate1, Coordinate
coordinate2) =>;
 coordinate1._xAxis == coordinate2._xAxis && coordinate1._yAxis ==
coordinate2._yAxis;

public static booloperator !=(Coordinate coordinate1, Coordinate
coordinate2) => !(coordinate1 == coordinate2);

//code omitted

public double Area() => _xAxis * _yAxis;

public override string ToString() =>$"({_xAxis},{_yAxis})";
}

In the preceding code, we have a new type coordinate, which is a surface of x axis and y
axis. Now if we want to apply some operations, that is not possible with the use of inbuilt
operators. With the help of operator overloading, we enhance the actual functionality of
inbuilt operators. The following code is the consumed coordinate type:

private static void OperatorOverloadigExample()
{
WriteLine("Operator overloading example\n");
Write("Enter x-axis of Surface1: ");
var x1 = ReadLine();
Write("Enter y-axis of Surface1: ");
var y1 = ReadLine();
Write("Enter x-axis of Surface2: ");
var x2= ReadLine();
Write("Enter y-axis of Surface2: ");
var y2= ReadLine();

var surface1 = new Coordinate(Convert.ToInt32(x1),Convert.ToInt32(y1));
var surface2 = new Coordinate(Convert.ToInt32(x2),Convert.ToInt32(y2));
WriteLine();
Clear();
WriteLine($"Surface1:{surface1}");
WriteLine($"Area of Surface1:{surface1.Area()}");
WriteLine($"Surface2:{surface2}");
WriteLine($"Area of Surface2:{surface2.Area()}");
WriteLine();
WriteLine($"surface1 == surface2: {surface1==surface2}");
WriteLine($"surface1 < surface2: {surface1 < surface2}");
WriteLine($"surface1 > surface2: {surface1 > surface2}");
WriteLine($"surface1 <= surface2: {surface1 <= surface2}");

Day 02 - Getting Started with C#

[58]

WriteLine($"surface1 >= surface2: {surface1 >= surface2}");
WriteLine();
var surface3 = surface1 + surface2;
WriteLine($"Addition: {nameof(surface1)} + {nameof(surface2)} =
{surface3}");
WriteLine($"{nameof(surface3)}:{surface3}");
WriteLine($"Area of {nameof(surface3)}: {surface3.Area()} ");
WriteLine();
WriteLine($"Substraction: {nameof(surface1)} - {nameof(surface2)} =
{surface1-surface2}");
WriteLine($"Multiplication: {nameof(surface1)} * {nameof(surface2)} =
{surface1 * surface2}");
WriteLine($"Division: {nameof(surface1)} / {nameof(surface2)} = {surface1 /
surface2}");
WriteLine($"Modulus: {nameof(surface1)} % {nameof(surface2)} = {surface1 %
surface2}");
}

In the preceding code snippet, we declared a variable of our struct Coordinate and call
operators for various operations. Note that by overloading, we have changed the actual
behavior of the operator, for instance, the add (+) operator, which generally adds two
numbers, but with the implementation here, the add (+) operator gives the sum of two
surfaces. The complete code produces the following result:

Day 02 - Getting Started with C#

[59]

An overview of type conversion
Type conversion means converting one type into another type. Alternatively, we call it as
casting or type casting. Type conversion is broadly divided into the following categories.

Implicit conversion
Implicit conversion is the conversion that is performed by the C# compiler internally to
match the the type of variable by assignment of values to that variable. This action happens
implicitly, and there's no need to write any extra code to obey the type-safe mechanism. In
implicit conversions, only smaller to larger types and derived classes to base class is
possible.

Explicit conversion
Explicit conversion is the conversion that is performed by the user explicitly with the use of
the cast operator; that's why this is also known as type casting. Explicit conversion is also
possible using built-in type conversion methods. For more information, refer to https:/ ​/
docs.​microsoft.​com/ ​en- ​us/ ​dotnet/ ​csharp/ ​language- ​reference/ ​keywords/ ​explicit-
numeric-​conversions- ​table.

Let's take a look at the following code snippet, which shows implicit/explicit type
conversion in action:

private static void ImplicitExplicitTypeConversionExample()
{
WriteLine("Implicit conversion");
int numberInt = 2589;
double doubleNumber = numberInt; // implicit type conversion

WriteLine($"{nameof(numberInt)} of type:{numberInt.GetType().FullName} has
value:{numberInt}");
WriteLine($"{nameof(doubleNumber)} of
type:{doubleNumber.GetType().FullName} implicitly type casted and has
value:{doubleNumber}");

WriteLine("Implicit conversion");
doubleNumber = 2589.05D;
numberInt = (int)doubleNumber; //explicit type conversion
WriteLine($"{nameof(doubleNumber)} of
type:{doubleNumber.GetType().FullName} has value:{doubleNumber}");
WriteLine($"{nameof(numberInt)} of type:{numberInt.GetType().FullName}

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/explicit-numeric-conversions-table
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/explicit-numeric-conversions-table
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/explicit-numeric-conversions-table
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/explicit-numeric-conversions-table
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/explicit-numeric-conversions-table
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/explicit-numeric-conversions-table
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/explicit-numeric-conversions-table
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/explicit-numeric-conversions-table
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/explicit-numeric-conversions-table
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/explicit-numeric-conversions-table
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/explicit-numeric-conversions-table
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/explicit-numeric-conversions-table
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/explicit-numeric-conversions-table
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/explicit-numeric-conversions-table
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/explicit-numeric-conversions-table
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/explicit-numeric-conversions-table
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/explicit-numeric-conversions-table
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/explicit-numeric-conversions-table
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/explicit-numeric-conversions-table
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/explicit-numeric-conversions-table
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/explicit-numeric-conversions-table
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/explicit-numeric-conversions-table
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/explicit-numeric-conversions-table
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/explicit-numeric-conversions-table
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/explicit-numeric-conversions-table
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/explicit-numeric-conversions-table
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/explicit-numeric-conversions-table
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/explicit-numeric-conversions-table
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/explicit-numeric-conversions-table

Day 02 - Getting Started with C#

[60]

explicitly type casted and has value:{numberInt}");
}

In the preceding code-snippet, we discussed implicit and explicit conversion when we
assign a variable numberInt of int type to a variable doubleNumber of double type, which
is called implicit type conversion, and the reverse is an explicit type conversion that
requires a casting using int. Note that implicitly, type conversion does not require any
casting, but explicitly, conversion requires type casting, and there are chances for loss of
data during explicit conversion. For instance, our explicit conversion from double to int
would result in a loss of data (all precision would be truncated while a value is assigned to
int type variable). This code produces the following result:

The two most important language fundamentals are type conversion and
casting. To know more about these two, refer to https:/ ​/​docs.
microsoft. ​com/ ​en- ​us/ ​dotnet/ ​csharp/ ​programming- ​guide/ ​types/
casting- ​and- ​type- ​conversions.

Understanding statements
In C#, you can evaluate different kinds of expression that would or would not generate the
results. Whenever you say something like what would happen if result >0, in that case, we
are stating something. This can be a decision-making statement, result-making statement,
assignment statement, or any other activity statement. On the other hand, loops are a code
block that repeatedly executes a couple of statements.

In this section, we will discuss statements and loops in detail.

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/casting-and-type-conversions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/casting-and-type-conversions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/casting-and-type-conversions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/casting-and-type-conversions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/casting-and-type-conversions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/casting-and-type-conversions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/casting-and-type-conversions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/casting-and-type-conversions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/casting-and-type-conversions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/casting-and-type-conversions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/casting-and-type-conversions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/casting-and-type-conversions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/casting-and-type-conversions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/casting-and-type-conversions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/casting-and-type-conversions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/casting-and-type-conversions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/casting-and-type-conversions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/casting-and-type-conversions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/casting-and-type-conversions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/casting-and-type-conversions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/casting-and-type-conversions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/casting-and-type-conversions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/casting-and-type-conversions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/casting-and-type-conversions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/casting-and-type-conversions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/casting-and-type-conversions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/casting-and-type-conversions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/casting-and-type-conversions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/casting-and-type-conversions

Day 02 - Getting Started with C#

[61]

A statement should perform some action before returning a result. In other words, if you
are writing a statement, that statement should say something. To do that, it has to execute
some inbuilt or custom operations. Statements can depend upon a decision or can be a part
of the result of any existing statement. The official page (https:/ ​/​docs. ​microsoft. ​com/ ​en-
us/​dotnet/​csharp/ ​programming- ​guide/ ​statements- ​expressions- ​operators/ ​statements)
defines statement as:

A statement can consist of a single line of code that ends in a semicolon, or a series of
single-line statements in a block. A statement block is enclosed in {} brackets and can
contain nested blocks.

Take a look at the following code snippet, which shows different statements:

private static void StatementExample()
{
WriteLine("Statement example:");
int singleLineStatement; //declarative statement
WriteLine("'intsingleLineStatement;' is a declarative statment.");
singleLineStatement = 125; //assignment statement
WriteLine("'singleLineStatement = 125;' is an assignmnet statement.");
WriteLine($"{nameof(singleLineStatement)} = {singleLineStatement}");
var persons = newList<Person>
 {
 newAuthor {Name = "Gaurav Aroraa" }
 }; //declarative and assignmnet statement
WriteLine("'var persons = new List<Person>();' is a declarative and
assignmnet statement.");

//block statement
foreach (var person in persons)
 {
 WriteLine("'foreach (var person in persons){}' is a block
statement.");
 WriteLine($"Name:{person.Name}");
 }
}

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements

Day 02 - Getting Started with C#

[62]

In the preceding code, we used three type statements: declarative, assignment, and block
statements. The code produces the following result:

According to the official page (https:/ ​/​docs. ​microsoft. ​com/​en- ​us/ ​dotnet/ ​csharp/
programming-​guide/ ​statements- ​expressions- ​operators/ ​statements), C# statements can
be broadly divided into the following categories.

Declarative statement
Whenever you declare a variable or constant, you are writing a declarative statement. You
can also assign the values to variables at the time of declaration of variables. Assigning
values to variables at time of declaration is an optional task, but constants are required to
assign values at the time you declared them.

This is a typical declarative statement:

int singleLineStatement; //declarative statement

Expression statement
In an expression statement, the expression that is on the right-hand side evaluates results
and assigns that result to the left-hand side variable. An expression statement could be an
assignment, method invocation, or new object creation. This is the typical expression
statement example:

Console.WriteLine($"Member name:{Name}");
var result = Num1 + Num2 * Num3 / Num4;

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements

Day 02 - Getting Started with C#

[63]

Selection statement
This is also called a decision-making statement. Statements are branched as per the
condition and their evaluations. The condition may be one or more than one. The selection
or decision statement falls under if...else, and switch case. In this section, we will
discuss these statements in detail.

The if statement
The if statement is a decision statement that could branch one or more statements to
evaluate. This statement consists of a Boolean expression. Let's consider the problem of
finding vowels in a book that was discussed on day one. Let's write this using the if
statement:

private static void IfStatementExample()
{
WriteLine("if statement example.");
Write("Enter character:");
char inputChar = Convert.ToChar(ReadLine());

//so many if statement, compiler go through all if statement
//not recommended way
if (char.ToLower(inputChar) == 'a')
WriteLine($"Character {inputChar} is a vowel.");
if (char.ToLower(inputChar) == 'e')
WriteLine($"Character {inputChar} is a vowel.");
if (char.ToLower(inputChar) == 'i')
WriteLine($"Character {inputChar} is a vowel.");
if (char.ToLower(inputChar) == 'o')
WriteLine($"Character {inputChar} is a vowel.");
if (char.ToLower(inputChar) == 'u')
WriteLine($"Character {inputChar} is a vowel.");
}

Day 02 - Getting Started with C#

[64]

In the preceding code, we are using only the if condition. However, the preceding code is
not a recommended code, but this is just there to showcase the usage of the if statement. In
the preceding code snippet, once the code executes a compiler, it verifies all if statements
without caring about the scenario where my first if statement got passed. Say, if you enter
a, which is a vowel in this case, the compiler finds the first expression to be true and prints
the output (we get our result), then the compiler checks the next if statement, and so on. In
this case, the compiler unnecessarily checks the rest of all four statements that should not
have happened. There might be a scenario where our code does not fall into any of the if
statements in the preceding code; in that case, we would not get the expected result. To
overcome such situations, we have the if...else statement, which we are going to
discuss in the upcoming section.

The if..else statement
In this if statement followed by else and the else block execute in case evaluation of if block
is false. This is a simple example:

private static void IfElseStatementExample()
{
WriteLine("if statement example.");
Write("Enter character:");
char inputChar = Convert.ToChar(ReadLine());
char[] vowels = {'a', 'e', 'i', 'o', 'u'};

if (vowels.Contains(char.ToLower(inputChar)))
WriteLine($"Character '{inputChar}' is a vowel.");
else
WriteLine($"Character '{inputChar}' is a consonent.");
}

In the preceding code snippet, we are using else followed by the if statement. When the
if statement evaluates to false, then the else block code will be executed.

if...else if...else statement
The if...else statement is very important when you need to test multiple conditions. In
this statement, the if statement evaluates first, then the else if statement, and at last the
else block executes. Here, the if statement may or may not have the if...else statement
or block; if...else always comes after the if block and before the else block. The else
statement is the final code block in the if...else...if else...else statement, which
indicates that none of preceding conditions evaluate to true.

Day 02 - Getting Started with C#

[65]

Take a look at the following code snippet:

private static void IfElseIfElseStatementExample()
{
WriteLine("if statement example.");
Write("Enter character:");
char inputChar = Convert.ToChar(ReadLine());

if (char.ToLower(inputChar) == 'a')
{ WriteLine($"Character {inputChar} is a vowel.");}
elseif (char.ToLower(inputChar) == 'e')
{ WriteLine($"Character {inputChar} is a vowel.");}
elseif (char.ToLower(inputChar) == 'i')
{ WriteLine($"Character {inputChar} is a vowel.");}
elseif (char.ToLower(inputChar) == 'o')
{ WriteLine($"Character {inputChar} is a vowel.");}
elseif (char.ToLower(inputChar) == 'u')
{ WriteLine($"Character {inputChar} is a vowel.");}
else
{ WriteLine($"Character '{inputChar}' is a consonant.");}
}

In the preceding code snippet, we have various if...else if...else statements that
evaluate the expression: whether inputchar is equivalent to comparative characternot.
In this code, if you enter a character other than a,e,i,o,u that does not fall in any of the
preceding condition, then the case else code block executes and it produces the final result.
So, when else executes, it returns the result by saying that the entered character is a
consonant.

Nested if statement
Nested if statements are nothing but if statement blocks within if statement blocks.
Similarly, we can nest else if statement blocks. This is a simple code snippet:

private static void NestedIfStatementExample()
{
WriteLine("nested if statement example.");
Write("Enter your age:");
int age = Convert.ToInt32(ReadLine());

if (age < 18)
 {
 WriteLine("Your age should be equal or greater than 18yrs.");
 if (age < 15)
 {
 WriteLine("You need to complete your school first");

Day 02 - Getting Started with C#

[66]

 }
 }
}

Switch statement
This is a statement that provides a way to select an expression using switch statement that
evaluates the conditions using case blocks when code does not fall in any of the case
blocks; then, the default block executes (default block is an optional block in
switch...case statement).

Switch statement is also known as an alternative to if...else if...else statement. Let's
rewrite our examples used in the previous section to showcase the if...else if...else
statement:

private static void SwitchCaseExample()
{
WriteLine("switch case statement example.");
Write("Enter character:");
charinputChar = Convert.ToChar(ReadLine());

switch (char.ToLower(inputChar))
{
case'a':
WriteLine($"Character {inputChar} is a vowel.");
break;
case'e':
WriteLine($"Character {inputChar} is a vowel.");
break;
case'i':
WriteLine($"Character {inputChar} is a vowel.");
break;
case'o':
WriteLine($"Character {inputChar} is a vowel.");
break;
case'u':
WriteLine($"Character {inputChar} is a vowel.");
break;
default:
WriteLine($"Character '{inputChar}' is a consonant.");
break;
}
}

Day 02 - Getting Started with C#

[67]

In the preceding code, the default block will execute if none of the case evaluates to true.
The switch...case statement will be discussed in detail on day three.

There is a slight difference when you're choosing between switch...case and
if...else. Refer to https:/ ​/ ​stackoverflow. ​com/ ​questions/ ​94305/ ​what- ​is- ​quicker-
switch-​on-​string- ​or- ​elseif- ​on- ​type for more details.

Iteration statement
These statements provide a way to iterate collection data. There may be a case where you
want to execute a code block multiple times or a repetitive action is required on the same
activity. There are iteration loops available to achieve this. Code blocks within the loop
statement execute sequentially, which means the first statement executes first, and so on.
The following are the main categories into which we can divide iteration statements of C#:

The do...while loop
This helps us execute a statement or a statement of block repeatedly until it evaluates the
expression to false. In do...while statement, a block of statement executes first and then it
checks the condition under while, which means a statement or block of statements that
execute at least once.

Take a look at the following code:

private static void DoWhileStatementExample()
{
WriteLine("do...while example");
Write("Enter repeatitive length:");
int length = Convert.ToInt32(ReadLine());
int count = 0;
do
 {
 count++;
 WriteLine(newstring('*',count));
 } while (count < length);
}

In the preceding code snippet, the statement of the do block executes until the statement of
the while block evaluates to false.

https://stackoverflow.com/questions/94305/what-is-quicker-switch-on-string-or-elseif-on-type
https://stackoverflow.com/questions/94305/what-is-quicker-switch-on-string-or-elseif-on-type
https://stackoverflow.com/questions/94305/what-is-quicker-switch-on-string-or-elseif-on-type
https://stackoverflow.com/questions/94305/what-is-quicker-switch-on-string-or-elseif-on-type
https://stackoverflow.com/questions/94305/what-is-quicker-switch-on-string-or-elseif-on-type
https://stackoverflow.com/questions/94305/what-is-quicker-switch-on-string-or-elseif-on-type
https://stackoverflow.com/questions/94305/what-is-quicker-switch-on-string-or-elseif-on-type
https://stackoverflow.com/questions/94305/what-is-quicker-switch-on-string-or-elseif-on-type
https://stackoverflow.com/questions/94305/what-is-quicker-switch-on-string-or-elseif-on-type
https://stackoverflow.com/questions/94305/what-is-quicker-switch-on-string-or-elseif-on-type
https://stackoverflow.com/questions/94305/what-is-quicker-switch-on-string-or-elseif-on-type
https://stackoverflow.com/questions/94305/what-is-quicker-switch-on-string-or-elseif-on-type
https://stackoverflow.com/questions/94305/what-is-quicker-switch-on-string-or-elseif-on-type
https://stackoverflow.com/questions/94305/what-is-quicker-switch-on-string-or-elseif-on-type
https://stackoverflow.com/questions/94305/what-is-quicker-switch-on-string-or-elseif-on-type
https://stackoverflow.com/questions/94305/what-is-quicker-switch-on-string-or-elseif-on-type
https://stackoverflow.com/questions/94305/what-is-quicker-switch-on-string-or-elseif-on-type
https://stackoverflow.com/questions/94305/what-is-quicker-switch-on-string-or-elseif-on-type
https://stackoverflow.com/questions/94305/what-is-quicker-switch-on-string-or-elseif-on-type
https://stackoverflow.com/questions/94305/what-is-quicker-switch-on-string-or-elseif-on-type
https://stackoverflow.com/questions/94305/what-is-quicker-switch-on-string-or-elseif-on-type
https://stackoverflow.com/questions/94305/what-is-quicker-switch-on-string-or-elseif-on-type
https://stackoverflow.com/questions/94305/what-is-quicker-switch-on-string-or-elseif-on-type
https://stackoverflow.com/questions/94305/what-is-quicker-switch-on-string-or-elseif-on-type
https://stackoverflow.com/questions/94305/what-is-quicker-switch-on-string-or-elseif-on-type
https://stackoverflow.com/questions/94305/what-is-quicker-switch-on-string-or-elseif-on-type
https://stackoverflow.com/questions/94305/what-is-quicker-switch-on-string-or-elseif-on-type
https://stackoverflow.com/questions/94305/what-is-quicker-switch-on-string-or-elseif-on-type
https://stackoverflow.com/questions/94305/what-is-quicker-switch-on-string-or-elseif-on-type
https://stackoverflow.com/questions/94305/what-is-quicker-switch-on-string-or-elseif-on-type

Day 02 - Getting Started with C#

[68]

The while loop
This executes the statement or code block until the condition evaluates to true. In this
expression evaluates before the execution of code-block, if expression evaluates to false,
loop terminates and no statement or code-block execute. Take a look at the following code
snippet:

private static void WhileStatementExample()
{
WriteLine("while example");
Write("Enter repeatitive length:");
int length = Convert.ToInt32(ReadLine());
int count = 0;
while (count < length)
 {
 count++;
 WriteLine(newstring('*', count));
 }
}

The preceding code executes the while statement repeatedly until expression evaluates to
false.

The for loop
The for loop is similar to other loops that help run a statement or code block repeatedly
until an expression evaluates to false. The for loop takes three sections: the initializer,
condition, and iterator, where the initializer section executes first and only once;
this is nothing but a variable to start a loop. The next section is condition, and if it evaluates
to true, then only body statements are executed; otherwise it terminates the loop. The third
and most important section is incremental or iterator, which updates the loop control
variable. Let's take a look at the following code snippet:

private static void ForStatementExample()
{
WriteLine("for loop example.");
Write("Enter repeatitive length:");
int length = Convert.ToInt32(ReadLine());
for (intcountIndex = 0; countIndex < length; countIndex++)
 {
 WriteLine(newstring('*', countIndex));
 }
}

Day 02 - Getting Started with C#

[69]

The preceding code snippet is a working example of a for loop. Here, our code statement
within the for loop block will executive repeatedly until the countIndex< length
expression evaluates to false.

The foreach loop
This helps iterate an array element or collection. It does the same thing as the for loop, but
this is available to iterate through a collection without the facility to add or remove items
from collections.

Let's take a look at the following code snippet:

private static void ForEachStatementExample()
{
WriteLine("foreach loop example");
char[] vowels = {'a', 'e', 'i', 'o', 'u'};
WriteLine("foreach on Array.");
foreach (var vowel in vowels)
 {
 WriteLine($"{vowel}");
 }
WriteLine();
var persons = new List<Person>
 {
 new Author {Name = "Gaurav Aroraa"},
 new Reviewer {Name = "ShivprasadKoirala"},
 new TeamMember {Name = "Vikas Tiwari"},
 new TeamMember {Name = "Denim Pinto"}
 };
WriteLine("foreach on collection");
foreach (var person in persons)
 {
 WriteLine($"{person.Name}");
 }
}

Day 02 - Getting Started with C#

[70]

The preceding code is a working example of a foreach statement that prints a person's
name. Name is a property in a collection of the Person object. The statement of the foreach
block executes repeatedly until the expression person in persons evaluates to false.

The jump statement
The jump statement, as is self-explanatory from the name, is a statement that helps move
control from one section to another. These are the main jump statements in C#.

break
This terminates the control flow for loop or in switch statement. Take a look at the
following example:

private static void BreakStatementExample()
{
WriteLine("break statement example");
WriteLine("break in for loop");
for (int count = 0; count < 50; count++
{
if (count == 8)
 {
 break;
 }
WriteLine($"{count}");
}
WriteLine();
WriteLine("break in switch statement");
SwitchCaseExample();
}

In the preceding code, execution of the for loop will break as soon as the if expression
evaluates to true.

continue
This helps continue the control to the next iteration of loop, and it comes with while, do,
for, or foreach loops. Take a look at the following example:

private static void ContinueStatementExample()
{
WriteLine("continue statement example");
WriteLine("continue in for loop");
for (int count = 0; count < 15; count++)

Day 02 - Getting Started with C#

[71]

{
if (count< 8)
{
 continue;
}
 WriteLine($"{count}");
}
}

The preceding code bypasses the execution when the if expression evaluates to true.

default
This comes with a switch statement and a default block that makes sure that if no
match found in any of the case blocks, the default block executes. Refer to the
switch...case statement for more detail.

Exception-handling statement
This has the ability to handle unknown issues within a program, which is known as
exceptional handling (we will discuss exception handling on day four).

Arrays and string manipulations
Arrays and strings are important in C# programming. There may be chances when you
need string manipulation or play with complex data using arrays. In this section, we will
discuss arrays and strings.

Arrays
An array is nothing but a data structure that stores fixed-size sequential elements of the
same type. Elements of an array that contained data are basically variables, and we can also
call an array a collection of variables of the same type, and this type is generally called an
element type.

An array is a block of contiguous memory. This block stores everything
required for an array, that is, elements, element rank, and length of the
array. The first element rank is 0 and the last element rank is equal to the
total length of array - 1.

Day 02 - Getting Started with C#

[72]

Let's consider the char[] vowels = {'a', 'e', 'i', 'o', 'u'}; array. An array
with size five. Every element is stored in a sequential manner and can be accessed using its
element rank. The following is the diagram showing what things an array declaration
contains:

The preceding figure is a representation of our array declaration for vowels that are of Data
type char. Here, [] represents an array and tells CLR that we are declaring an array of
characters. Vowels is a variable name and the right-hand side representation of a complete
array that contains data.

The following figure depicts what this array looks like in memory:

In the preceding figure, we have a group of contiguous memory blocks. This also tells us
that the lowest address of an array in memory corresponds to the first element of an array
and the highest address of the array in memory corresponds to the last element.

We can retrieve the value of an element by its rank (starting with 0). So, in the preceding
code, vowels[0] will give us a and vowels[4] will give us u.

When we talk about an array, we mean a reference type because array
types are reference types. Array types are derived from System.Array,
which is a class. Hence, all array types are reference types.

Day 02 - Getting Started with C#

[73]

Alternatively, we can also get the values using for, which iterates until the rankIndex <
vowels.Length expression evaluates to false and the code block of the for loop statement
prints the array element based on its rank:

private static void ArrayExample()
{
WriteLine("Array example.\n");
char[] vowels = {'a', 'e', 'i', 'o', 'u'};
WriteLine("char[] vowels = {'a', 'e', 'i', 'o', 'u'};\n");
WriteLine("acces array using for loop");
for (intrankIndex = 0; rankIndex<vowels.Length; rankIndex++)
{
 Write($"{vowels[rankIndex]} ");
}
WriteLine();
WriteLine("acces array using foreach loop");
foreach (char vowel in vowels)
 {
 Write($"{vowel} ");
 }
}

The preceding code produces the following results:

In the preceding example, we initialized the array and assigned data to a statement that is
equivalent to char[] vowels = newchar[5];. Here, we are telling CLR that we are
creating an array named vowels of type char that has a maximum of five elements.
Alternatively, we can also declare the same char[] vowels = newchar[5] { 'a',
'e', 'i', 'o', 'u' };

In this section, we will discuss the different types of arrays and see how we can use arrays
in different scenarios.

Day 02 - Getting Started with C#

[74]

Types of arrays
Earlier, we discussed what an array is and how we can declare an array. Until now, we have
discussed an array of single dimension. Consider a matrix where we have rows and
columns. Arrays are a representation of data arranged in rows and columns in respect of the
matrix. However, arrays have more types as discussed here.

Single-dimensional array
A single-dimensional array can be declared simply by initializing the array class and setting
up the size. Here is a single-dimensional array:

string[] cardinalDirections = {"North","East","South","West"};

Multidimensional array
Arrays can be declared as more than one-dimension, which that means you can create a
matrix of rows and columns. Multidimensional arrays could be two-dimensional arrays,
three-dimensional arrays, or more. Different ways to create a typical two-dimensional array
of 2x2 size means two rows and two columns:

int[,] numbers = new int[2,2];
int[,] numbers = new int[2, 2] {{1,2},{3,4} };

Following is the code-snippet that accesses the two-dimensional array:

int[,] numbers = new int[2, 2] {{1,2},{3,4} };
for (introwsIndex = 0; rowsIndex< 2; rowsIndex++)
{
for (intcolIndex = 0; colIndex< 2; colIndex++)
 {
 WriteLine($"numbers[{rowsIndex},{colIndex}] = {numbers[rowsIndex,
colIndex]}");
 }
}

The preceding code snippet is a representation of an array of 2x2, that is, two rows and two
columns. In mathematical terms, we also know this as a square matrix. To retrieve the
elements of this array, we need at least two for loops; the outer loop will work on rows and
the inner loop will work on columns, and finally, we can get the element value using
number[rowIndex][colIndex].

Day 02 - Getting Started with C#

[75]

A square matrix is the one with the same rows and columns. Generally, it
is called an n by n matrix.

This code produces the following results:

Jagged array
Jagged array is an array of array or array in array. In a jagged array, the element of array is
an array. You can also set an array's element with different sizes/dimensions. Any element
of jagged array can have another array.

A typical declaration of a jagged array is as follows:

string[][,] collaborators = new string[5][,];

Consider the following code-snippet:

WriteLine("Jagged array.\n");
string[][,] collaborators = new string[3][,]
{
new[,] {{"Name", "ShivprasadKoirala"}, {"Age", "40"}},
new[,] {{"Name", "Gaurav Aroraa" }, {"Age", "43"}},
new[,] {{"Name", "Vikas Tiwari"}, {"Age", "28"}}
};

for (int index = 0; index <collaborators.Length; index++)
{
 for (introwIndex = 0; rowIndex< 2; rowIndex++)
 {
 for (intcolIndex = 0; colIndex< 2; colIndex++)
 {
 WriteLine($"collaborators[{index}][{rowIndex},
 {colIndex}] = {collaborators[index]
 [rowIndex,colIndex]}");
 }
 }
}

Day 02 - Getting Started with C#

[76]

In the preceding code, we are declaring a jagged array of three elements that contain a two-
dimensional array. After execution, it produces the following results:

You can also declare more complex arrays to interact with more complex scenarios. You can
get more information by referring to https:/ ​/​docs. ​microsoft. ​com/ ​en- ​us/​dotnet/ ​api/
system.​array?​view= ​netcore- ​2. ​0.

Implicitly typed arrays can be created as well. In implicitly typed arrays,
the array type inferred from the elements is defined during array
initialization, for instance, var charArray = new[] {'a', 'e', 'i',
'o', 'u'}; here we declare a char array. For more information on
implicitly typed arrays, refer to https:/ ​/ ​docs. ​microsoft. ​com/​en- ​us/
dotnet/ ​csharp/ ​programming- ​guide/ ​arrays/ ​implicitly- ​typed- ​arrays.

Strings
In C#, a string is nothing but an array of characters that represents UTF-16 code units and is
used to represent a text.

The maximum size of a string in memory is 2 GB.

The declaration of a string object is as simple as you declaring any variable the most
commonly used statement: string authorName = "Gaurav Aroraa";.

https://docs.microsoft.com/en-us/dotnet/api/system.array?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.array?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.array?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.array?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.array?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.array?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.array?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.array?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.array?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.array?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.array?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.array?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.array?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.array?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.array?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.array?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.array?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.array?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.array?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.array?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.array?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.array?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.array?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.array?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.array?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.array?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.array?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.array?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/arrays/implicitly-typed-arrays
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/arrays/implicitly-typed-arrays
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/arrays/implicitly-typed-arrays
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/arrays/implicitly-typed-arrays
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/arrays/implicitly-typed-arrays
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/arrays/implicitly-typed-arrays
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/arrays/implicitly-typed-arrays
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/arrays/implicitly-typed-arrays
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/arrays/implicitly-typed-arrays
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/arrays/implicitly-typed-arrays
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/arrays/implicitly-typed-arrays
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/arrays/implicitly-typed-arrays
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/arrays/implicitly-typed-arrays
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/arrays/implicitly-typed-arrays
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/arrays/implicitly-typed-arrays
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/arrays/implicitly-typed-arrays
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/arrays/implicitly-typed-arrays
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/arrays/implicitly-typed-arrays
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/arrays/implicitly-typed-arrays
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/arrays/implicitly-typed-arrays
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/arrays/implicitly-typed-arrays
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/arrays/implicitly-typed-arrays
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/arrays/implicitly-typed-arrays
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/arrays/implicitly-typed-arrays
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/arrays/implicitly-typed-arrays
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/arrays/implicitly-typed-arrays
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/arrays/implicitly-typed-arrays
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/arrays/implicitly-typed-arrays

Day 02 - Getting Started with C#

[77]

A string object is called immutable, which means it is read-only. A string object's value
cannot be modified after it is created. Every operation that you perform on a string object
returns a new string. As strings are immutable, they cause a huge performance penalty
because every operation on a string needs to create a new string. To overcome this, the
StringBuilder object is available in the System.Text class.

For more information on strings, refer to https:/ ​/​docs. ​microsoft. ​com/
en-​us/ ​dotnet/ ​api/ ​system. ​string? ​view= ​netcore- ​2. ​0#Immutability.

These are the alternative ways to declare string objects:

private static void StringExample()
{
WriteLine("String object creation");
string authorName = "Gaurav Aroraa"; //string literal assignment
WriteLine($"{authorName}");
string property = "Name: ";
string person = "Gaurav";
string personName = property + person; //string concatenation
WriteLine($"{personName}");

char[] language = {'c', 's', 'h', 'a', 'r', 'p'};
stringstr Language = new string(language); //initializing the constructor
WriteLine($"{strLanguage}");
string repeatMe = new string('*', 5);
WriteLine($"{repeatMe}");
string[] members = {"Shivprasad", "Denim", "Vikas", "Gaurav"};
string name = string.Join(" ", members);
WriteLine($"{name}");
}

The preceding code snippets tells us that the declaration can be done as follows:

String literal assignment while declaring a string variable
While concatenating string
Constructor initialization using new
Method returning string

There are plenty of string methods and formatting actions that are
available for string operations; refer to
https://docs.microsoft.com/en-us/dotnet/api/system.string?view=n

etcore-2.0 for more details.

https://docs.microsoft.com/en-us/dotnet/api/system.string?view=netcore-2.0#Immutability
https://docs.microsoft.com/en-us/dotnet/api/system.string?view=netcore-2.0#Immutability
https://docs.microsoft.com/en-us/dotnet/api/system.string?view=netcore-2.0#Immutability
https://docs.microsoft.com/en-us/dotnet/api/system.string?view=netcore-2.0#Immutability
https://docs.microsoft.com/en-us/dotnet/api/system.string?view=netcore-2.0#Immutability
https://docs.microsoft.com/en-us/dotnet/api/system.string?view=netcore-2.0#Immutability
https://docs.microsoft.com/en-us/dotnet/api/system.string?view=netcore-2.0#Immutability
https://docs.microsoft.com/en-us/dotnet/api/system.string?view=netcore-2.0#Immutability
https://docs.microsoft.com/en-us/dotnet/api/system.string?view=netcore-2.0#Immutability
https://docs.microsoft.com/en-us/dotnet/api/system.string?view=netcore-2.0#Immutability
https://docs.microsoft.com/en-us/dotnet/api/system.string?view=netcore-2.0#Immutability
https://docs.microsoft.com/en-us/dotnet/api/system.string?view=netcore-2.0#Immutability
https://docs.microsoft.com/en-us/dotnet/api/system.string?view=netcore-2.0#Immutability
https://docs.microsoft.com/en-us/dotnet/api/system.string?view=netcore-2.0#Immutability
https://docs.microsoft.com/en-us/dotnet/api/system.string?view=netcore-2.0#Immutability
https://docs.microsoft.com/en-us/dotnet/api/system.string?view=netcore-2.0#Immutability
https://docs.microsoft.com/en-us/dotnet/api/system.string?view=netcore-2.0#Immutability
https://docs.microsoft.com/en-us/dotnet/api/system.string?view=netcore-2.0#Immutability
https://docs.microsoft.com/en-us/dotnet/api/system.string?view=netcore-2.0#Immutability
https://docs.microsoft.com/en-us/dotnet/api/system.string?view=netcore-2.0#Immutability
https://docs.microsoft.com/en-us/dotnet/api/system.string?view=netcore-2.0#Immutability
https://docs.microsoft.com/en-us/dotnet/api/system.string?view=netcore-2.0#Immutability
https://docs.microsoft.com/en-us/dotnet/api/system.string?view=netcore-2.0#Immutability
https://docs.microsoft.com/en-us/dotnet/api/system.string?view=netcore-2.0#Immutability
https://docs.microsoft.com/en-us/dotnet/api/system.string?view=netcore-2.0#Immutability
https://docs.microsoft.com/en-us/dotnet/api/system.string?view=netcore-2.0#Immutability
https://docs.microsoft.com/en-us/dotnet/api/system.string?view=netcore-2.0#Immutability
https://docs.microsoft.com/en-us/dotnet/api/system.string?view=netcore-2.0#Immutability
https://docs.microsoft.com/en-us/dotnet/api/system.string?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.string?view=netcore-2.0

Day 02 - Getting Started with C#

[78]

Structure versus class
Similar to a class in C#, a struct is also a data structure that consists of members, functions,
and so on. Classes are reference types, but structs are value types; hence, these are not
required for heap allocation but for allocation on the stack.

Value type data will be allocated on stack and reference type data will be allocated on heap.
A value type that is used in struct is stored on the stack, but when the same value type is
used in an array, it is stored in a heap.

For more details on heap and stack memory allocation, refer to http:/ ​/
www-​ee. ​eng. ​hawaii. ​edu/ ​~tep/ ​EE160/ ​Book/ ​chap14/ ​subsection2. ​1.​1. ​8.
html and https:/ ​/ ​www. ​codeproject. ​com/ ​Articles/ ​1058126/ ​Memory-
allocation- ​in- ​Net- ​Value- ​type- ​Reference- ​type.

So, when you create a variable of struct type, that variable directly stores data instead of
reference, as is the case with classes. In C#, the struct keyword (refer to section C#
keywords for more detail) helps declare structures. Structures are helpful in representing a
record or when you need to present some data.

Take a look at the following example:

public struct BookAuthor
{
public string Name;
public string BookTitle;
public int Age;
public string City;
public string State;
public string Country;

 //Code omitted
}

Here, we have a structure named BookAuthor that represents the data of a book author.
Take a look at the following code that is consuming this structure:

private static void StructureExample()
{
WriteLine("Structure example\n");
Write("Author name:");
var name = ReadLine();
Write("Book Title:");
var bookTitle = ReadLine();
Write("Author age:");
var age = ReadLine();

http://www-ee.eng.hawaii.edu/~tep/EE160/Book/chap14/subsection2.1.1.8.html
http://www-ee.eng.hawaii.edu/~tep/EE160/Book/chap14/subsection2.1.1.8.html
http://www-ee.eng.hawaii.edu/~tep/EE160/Book/chap14/subsection2.1.1.8.html
http://www-ee.eng.hawaii.edu/~tep/EE160/Book/chap14/subsection2.1.1.8.html
http://www-ee.eng.hawaii.edu/~tep/EE160/Book/chap14/subsection2.1.1.8.html
http://www-ee.eng.hawaii.edu/~tep/EE160/Book/chap14/subsection2.1.1.8.html
http://www-ee.eng.hawaii.edu/~tep/EE160/Book/chap14/subsection2.1.1.8.html
http://www-ee.eng.hawaii.edu/~tep/EE160/Book/chap14/subsection2.1.1.8.html
http://www-ee.eng.hawaii.edu/~tep/EE160/Book/chap14/subsection2.1.1.8.html
http://www-ee.eng.hawaii.edu/~tep/EE160/Book/chap14/subsection2.1.1.8.html
http://www-ee.eng.hawaii.edu/~tep/EE160/Book/chap14/subsection2.1.1.8.html
http://www-ee.eng.hawaii.edu/~tep/EE160/Book/chap14/subsection2.1.1.8.html
http://www-ee.eng.hawaii.edu/~tep/EE160/Book/chap14/subsection2.1.1.8.html
http://www-ee.eng.hawaii.edu/~tep/EE160/Book/chap14/subsection2.1.1.8.html
http://www-ee.eng.hawaii.edu/~tep/EE160/Book/chap14/subsection2.1.1.8.html
http://www-ee.eng.hawaii.edu/~tep/EE160/Book/chap14/subsection2.1.1.8.html
http://www-ee.eng.hawaii.edu/~tep/EE160/Book/chap14/subsection2.1.1.8.html
http://www-ee.eng.hawaii.edu/~tep/EE160/Book/chap14/subsection2.1.1.8.html
http://www-ee.eng.hawaii.edu/~tep/EE160/Book/chap14/subsection2.1.1.8.html
http://www-ee.eng.hawaii.edu/~tep/EE160/Book/chap14/subsection2.1.1.8.html
http://www-ee.eng.hawaii.edu/~tep/EE160/Book/chap14/subsection2.1.1.8.html
http://www-ee.eng.hawaii.edu/~tep/EE160/Book/chap14/subsection2.1.1.8.html
http://www-ee.eng.hawaii.edu/~tep/EE160/Book/chap14/subsection2.1.1.8.html
http://www-ee.eng.hawaii.edu/~tep/EE160/Book/chap14/subsection2.1.1.8.html
http://www-ee.eng.hawaii.edu/~tep/EE160/Book/chap14/subsection2.1.1.8.html
http://www-ee.eng.hawaii.edu/~tep/EE160/Book/chap14/subsection2.1.1.8.html
http://www-ee.eng.hawaii.edu/~tep/EE160/Book/chap14/subsection2.1.1.8.html
http://www-ee.eng.hawaii.edu/~tep/EE160/Book/chap14/subsection2.1.1.8.html
http://www-ee.eng.hawaii.edu/~tep/EE160/Book/chap14/subsection2.1.1.8.html
https://www.codeproject.com/Articles/1058126/Memory-allocation-in-Net-Value-type-Reference-type
https://www.codeproject.com/Articles/1058126/Memory-allocation-in-Net-Value-type-Reference-type
https://www.codeproject.com/Articles/1058126/Memory-allocation-in-Net-Value-type-Reference-type
https://www.codeproject.com/Articles/1058126/Memory-allocation-in-Net-Value-type-Reference-type
https://www.codeproject.com/Articles/1058126/Memory-allocation-in-Net-Value-type-Reference-type
https://www.codeproject.com/Articles/1058126/Memory-allocation-in-Net-Value-type-Reference-type
https://www.codeproject.com/Articles/1058126/Memory-allocation-in-Net-Value-type-Reference-type
https://www.codeproject.com/Articles/1058126/Memory-allocation-in-Net-Value-type-Reference-type
https://www.codeproject.com/Articles/1058126/Memory-allocation-in-Net-Value-type-Reference-type
https://www.codeproject.com/Articles/1058126/Memory-allocation-in-Net-Value-type-Reference-type
https://www.codeproject.com/Articles/1058126/Memory-allocation-in-Net-Value-type-Reference-type
https://www.codeproject.com/Articles/1058126/Memory-allocation-in-Net-Value-type-Reference-type
https://www.codeproject.com/Articles/1058126/Memory-allocation-in-Net-Value-type-Reference-type
https://www.codeproject.com/Articles/1058126/Memory-allocation-in-Net-Value-type-Reference-type
https://www.codeproject.com/Articles/1058126/Memory-allocation-in-Net-Value-type-Reference-type
https://www.codeproject.com/Articles/1058126/Memory-allocation-in-Net-Value-type-Reference-type
https://www.codeproject.com/Articles/1058126/Memory-allocation-in-Net-Value-type-Reference-type
https://www.codeproject.com/Articles/1058126/Memory-allocation-in-Net-Value-type-Reference-type
https://www.codeproject.com/Articles/1058126/Memory-allocation-in-Net-Value-type-Reference-type
https://www.codeproject.com/Articles/1058126/Memory-allocation-in-Net-Value-type-Reference-type
https://www.codeproject.com/Articles/1058126/Memory-allocation-in-Net-Value-type-Reference-type
https://www.codeproject.com/Articles/1058126/Memory-allocation-in-Net-Value-type-Reference-type
https://www.codeproject.com/Articles/1058126/Memory-allocation-in-Net-Value-type-Reference-type
https://www.codeproject.com/Articles/1058126/Memory-allocation-in-Net-Value-type-Reference-type
https://www.codeproject.com/Articles/1058126/Memory-allocation-in-Net-Value-type-Reference-type
https://www.codeproject.com/Articles/1058126/Memory-allocation-in-Net-Value-type-Reference-type
https://www.codeproject.com/Articles/1058126/Memory-allocation-in-Net-Value-type-Reference-type
https://www.codeproject.com/Articles/1058126/Memory-allocation-in-Net-Value-type-Reference-type

Day 02 - Getting Started with C#

[79]

Write("Author city:");
var city = ReadLine();
Write("Author state:");
var state = ReadLine();
Write("Author country:");
var country = ReadLine();

BookAuthor author = new
BookAuthor(name,bookTitle,Convert.ToInt32(age),city,state,country);
WriteLine($"{author.ToString()}");
BookAuthor author1 = author; //copy structure, it will copy only data as
this is //not a class

Write("Change author name:");
var name1 = ReadLine();
author.Name = name1;

WriteLine("Author1");
WriteLine($"{author.ToString()}");
WriteLine("Author2");
WriteLine($"{author1.ToString()}");
}

This simply displays the author details. The important point here is that once we've copied
the structure, changing any field of the structure would not impact the copied contents; this
is because when we copy, only the data is copied. If you perform the same operation on a
class, that results in copying references instead of copying data. This copying process is
called deep copy and shallow copy. Refer to https:/ ​/​www. ​codeproject. ​com/​Articles/
28952/​Shallow-​Copy- ​vs- ​Deep- ​Copy- ​in- ​NET in order to know more about shallow copy
versus deep copy.

This is the result of the preceding code:

https://www.codeproject.com/Articles/28952/Shallow-Copy-vs-Deep-Copy-in-NET
https://www.codeproject.com/Articles/28952/Shallow-Copy-vs-Deep-Copy-in-NET
https://www.codeproject.com/Articles/28952/Shallow-Copy-vs-Deep-Copy-in-NET
https://www.codeproject.com/Articles/28952/Shallow-Copy-vs-Deep-Copy-in-NET
https://www.codeproject.com/Articles/28952/Shallow-Copy-vs-Deep-Copy-in-NET
https://www.codeproject.com/Articles/28952/Shallow-Copy-vs-Deep-Copy-in-NET
https://www.codeproject.com/Articles/28952/Shallow-Copy-vs-Deep-Copy-in-NET
https://www.codeproject.com/Articles/28952/Shallow-Copy-vs-Deep-Copy-in-NET
https://www.codeproject.com/Articles/28952/Shallow-Copy-vs-Deep-Copy-in-NET
https://www.codeproject.com/Articles/28952/Shallow-Copy-vs-Deep-Copy-in-NET
https://www.codeproject.com/Articles/28952/Shallow-Copy-vs-Deep-Copy-in-NET
https://www.codeproject.com/Articles/28952/Shallow-Copy-vs-Deep-Copy-in-NET
https://www.codeproject.com/Articles/28952/Shallow-Copy-vs-Deep-Copy-in-NET
https://www.codeproject.com/Articles/28952/Shallow-Copy-vs-Deep-Copy-in-NET
https://www.codeproject.com/Articles/28952/Shallow-Copy-vs-Deep-Copy-in-NET
https://www.codeproject.com/Articles/28952/Shallow-Copy-vs-Deep-Copy-in-NET
https://www.codeproject.com/Articles/28952/Shallow-Copy-vs-Deep-Copy-in-NET
https://www.codeproject.com/Articles/28952/Shallow-Copy-vs-Deep-Copy-in-NET
https://www.codeproject.com/Articles/28952/Shallow-Copy-vs-Deep-Copy-in-NET
https://www.codeproject.com/Articles/28952/Shallow-Copy-vs-Deep-Copy-in-NET
https://www.codeproject.com/Articles/28952/Shallow-Copy-vs-Deep-Copy-in-NET
https://www.codeproject.com/Articles/28952/Shallow-Copy-vs-Deep-Copy-in-NET
https://www.codeproject.com/Articles/28952/Shallow-Copy-vs-Deep-Copy-in-NET
https://www.codeproject.com/Articles/28952/Shallow-Copy-vs-Deep-Copy-in-NET
https://www.codeproject.com/Articles/28952/Shallow-Copy-vs-Deep-Copy-in-NET
https://www.codeproject.com/Articles/28952/Shallow-Copy-vs-Deep-Copy-in-NET

Day 02 - Getting Started with C#

[80]

Now, let's try the same operations with the class; take a look at the following code, which
consumes our class:

private static void StructureExample()
{
WriteLine("Structure example\n");
Write("Author name:");
var name = ReadLine();
Write("Book Title:");
var bookTitle = ReadLine();
Write("Author age:");
var age = ReadLine();
Write("Author city:");
var city = ReadLine();
Write("Author state:");
var state = ReadLine();
Write("Author country:");
var country = ReadLine();

ClassBookAuthor author = new
ClassBookAuthor(name,bookTitle,Convert.ToInt32(age),city,state,country);
WriteLine($"{author.ToString()}");
ClassBookAuthor author1 = author; //copy class, it will copy reference

Write("Change author name:");
var name1 = ReadLine();
author.Name = name1;

WriteLine("Author1");
WriteLine($"{author.ToString()}");
WriteLine("Author2");
WriteLine($"{author1.ToString()}");
}

Day 02 - Getting Started with C#

[81]

Now both our class variables will have the same values. The following screenshot shows us
the results:

Structures and classes are different:

Structures are value types, whereas classes are reference types.
Classes support single inheritance (multiple inheritance can be achieved using
interfaces), but structures do not support inheritance.
Classes have an implicit default constructor, but a structure does not have a
default constructor.

There are more functionalities of structures that we did not discuss here. Refer to https:/ ​/
docs.​microsoft.​com/ ​en- ​us/ ​dotnet/ ​csharp/ ​tour- ​of- ​csharp/ ​structs to get more inside
information about struct.

Hands-on exercise
Let's rewind our learning for today - that is, day two - by solving the following problems:

Write a short program to demonstrate that we can use same class name within1.
different namespaces.
Define the console class. Write a console program to display all available2.
colors by modifying the code example discussed in the book so that all vowels
will be displayed as green and all consonants as blue.
Elaborate on C# reserved keywords.3.
Describe different categories of C# keywords with examples.4.

https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/structs
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/structs
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/structs
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/structs
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/structs
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/structs
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/structs
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/structs
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/structs
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/structs
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/structs
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/structs
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/structs
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/structs
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/structs
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/structs
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/structs
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/structs
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/structs
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/structs
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/structs
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/structs
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/structs
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/structs

Day 02 - Getting Started with C#

[82]

Create a small program to demonstrate the is and as operators.5.
Write a short program to showcase a query expression with the help of contextual6.
keywords.
Write a short program to showcase the importance of the this and base7.
keywords.
Define boxing and unboxing with the help of a short program.8.
Write a short program to prove that pointer type variable stores the memory of9.
another variable rather than data.
Write a short program to showcase the operator precedence order.10.
What is operator overloading? Write a short program to showcase operator11.
overloading in action.
What are the operators that cannot be overloaded and why?12.
Define type conversion with the help of a short program.13.
Write a short program that uses all the available built-in C# types and perform14.
casting using the conversion method (decimal to int conversion can be achieved
using var result = Convert.ToInt32(5689.25);).
Define C# statements.15.
Write a program to elaborate each statement category.16.
What are jump statements? Write a small program to showcase all jump17.
statements.
What is an array in C#?18.
Write a program and prove that an array is a block of contiguous memory.19.
Refer to System.Array class (https:/ ​/​docs. ​microsoft. ​com/ ​en-​us/ ​dotnet/ ​api/20.
system.​array? ​view= ​netcore- ​2. ​0) and write a short program.
Pass an array as a parameter to a method.21.
Sort the array.22.
Copy the array.23.
Refer to the System.String class and explore all its methods and properties24.
with the help of a short program.
How are string objects immutable? Write a short program to showcase this.25.
What are string builders?26.
What is a class?27.
What is a structure?28.
Write a small program and showcase the differences between a struct and a29.
class.

https://docs.microsoft.com/en-us/dotnet/api/system.array?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.array?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.array?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.array?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.array?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.array?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.array?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.array?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.array?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.array?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.array?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.array?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.array?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.array?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.array?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.array?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.array?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.array?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.array?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.array?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.array?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.array?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.array?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.array?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.array?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.array?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.array?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.array?view=netcore-2.0

Day 02 - Getting Started with C#

[83]

Explain compile-time type and runtime type.30.
Write a program to show the difference between compile-time type and runtime31.
type.
Write a short program to prove that, explicitly, type conversion leads to data loss.32.

Revisiting day 2
So, we are concluding day two of our seven-day learning series. Today, we started with a
very simple C# program and went through all of its parts (a typical C# program). Then, we
discussed everything about C# reserved keywords and accessors and we also understand
what contextual keywords are.

We covered the type casting and type conversion of various available data types in C#. You
learned how boxing and unboxing happened and how we can perform conversion using
inbuilt methods.

We also went through and understood various statements, and you learned the usage and
flow of various statements, such as for, foreach, while, do. We looked at conditional
statements, that is, if, if...else, if...elseif...else switch with the help of code
examples.

We then went through arrays and understood them with the help of code examples,
including string manipulations.

Finally, we concluded our day by covering structure and classes. We looked at how these
two are different.

Tomorrow, on day three, we will discuss all the new features of the C# language and
discuss their usage and functionality with the help of code examples.

3
Day 03 - What's New in C#

Today, we will learn a very recent and newly released feature with the current version of
the C# language, that is, C# 7.0 (this is the most recent adaptation amid the review of this
book). Some of these elements are altogether new and others were present in past
adaptations and have been upgraded in the current version of the language. C# 7.0 will
change the game with a lot of new features to the table. Some of these elements, such as
tuples, are augmentations of officially accessible ideas while others are completely new.
Here are the fundamental elements we will learn about on Day 03:

Tuples and deconstruction
Pattern matching
Local functions
Literal improvements
Async Main
Default Expressions
Infer Tuple Names

Tuples and deconstruction
Tuples have not been newly introduced in the current version but were introduced with the
.NET 4.0 release. In the present release, they have been improved.

Tuples
Tuples are there at whatever point a particular case needs to return multiple values from a
method. For instance, let's say we have to find odd and even numbers from a given number
series.

Day 03 - What's New in C#

[85]

Tuples are an unchanging information esteem that hold related data.
Tuples used to aggregate together related data, for example, such that a
person's name, age, gender and whatever you want data as an
information.

To complete this, our method should return or provide us the result with a number and
saying whether this is an odd number or even number. For a method that will return these
multiple values, we could use custom datatypes, dynamic return types, or out parameters,
which sometimes will create confusion for a developer.

To use tuples, you need to add the NuGet package:

https://www.nuget.org/packages/System.ValueTuple/

For this problem, we have a tuple object and in C# 7.0 we have two different things, tuple
types and tuple literals, to return multiple values from a method.

Let us discuss tuples in detail using a code example. Consider the following code snippet:

public static (int, string) FindOddEvenBySingleNumber(int number)
{
 string oddOrEven = IsOddNumber(number) ? "Odd" :"Even";
 return (number, oddOrEven);//tuple literal
}

In the preceding code snippet, the method FindOddEvenBySingleNumber is returning
multiple values, which tells us whether a number is odd or even. See the return statement
return (number, oddOrEven) of the preceding code: here, we are simply returning two
different variables. Now, how are these values accessible from the caller method? In this
case, we are returning a tuple value and the caller method will receive a tuple with these
values, which are nothing but elements or items of a tuple. In this case, the number will be
available as Item1 and oddOrEven as Item2 for the caller method. The following is from
the caller method:

var result = OddEven.FindOddEvenBySingleNumber(Convert.ToInt32(number);
Console.WriteLine($"Number:{result.Item1} is {result.Item2}");

https://www.nuget.org/packages/System.ValueTuple/

Day 03 - What's New in C#

[86]

In the preceding code snippet, result.Item1 represents number and result.Item2
represents oddOrEven. This is fine when someone knows the representation of these tuple
items/elements. But think of a scenario where we have numerous tuple elements and the
developer who is writing the caller method is not aware of the representation of these
items/elements. In that case, it is bit complex to consume these tuple items/elements. To
overcome this problem, we can give a name to these tuple items. We call these named tuple
items/elements. Let us modify our method FindOddEvenBySingleNumber to return
named tuple items:

public static (int number, string oddOrEvent) FindOddEvenBySingleNumber
(int number)
{
 string result = IsOddNumber(number) ? "Odd" : "Even";
 return (number:number, oddOrEvent: result);//returning
 named tuple element in tuple literal
}

In the preceding code snippet, we added more descriptive names to our tuple. Now the
caller method can directly use these names, as shown in the following code snippet:

var result = OddEven.FindOddEvenBySingle(Convert.ToInt32(number));
Console.WriteLine($"Number:{result.number} is {result.oddOrEvent}");

By adding some descriptive names to the tuple, we can easily identify and use
items/elements of the tuple in the caller method.

The System.ValueTuple struct
Tuples in C# 7.0 require the NuGet package System.ValueType. This is nothing but a
struct by design. This contains a few static and public methods to work undeneath:

CompareTo(ValueTuple): A public method that compares to the ValueTuple
instance. The method returns 0 if the comparison is successful, else it returns 1.
Here we have two methods that show the power of the CompareTo method:

public static bool CompareToTuple(int number)
{
 var oddEvenValueTuple =
 FindOddEvenBySingleNumber(number);
 var differentTupleValue =
 FindOddEvenBySingleNumberNamedElement(number + 1);
 var res =
 oddEvenValueTuple.CompareTo(differentTupleValue);
 return res == 0; // 0 if other is a ValueTuple instance

Day 03 - What's New in C#

[87]

 and 1 if other is null
}
public static bool CompareToTuple1(int number)
{
 var oddEvenValueTuple =
 FindOddEvenBySingleNumber(number);
 var sameTupleValue =
 FindOddEvenBySingleNumberNamedElement(number);
 var res = oddEvenValueTuple.CompareTo(sameTupleValue);
 return res == 0;// 0 if other is a ValueTuple instance
 and 1 if other is null
}

Here is the calling code snippet to get the results from preceding code:

Console.Clear();
Console.Write("Enter number: ");
var num = Console.ReadLine();
var resultNum =
OddEven.FindOddEvenBySingleNumberNamedElement(Convert.ToInt32(n
um));
Console.WriteLine($"Number:{resultNum.number} is
{resultNum.oddOrEven}.");
Console.WriteLine();
var comp = OddEven.CompareToTuple(Convert.ToInt32(num));
Console.WriteLine($"Comparison of two Tuple objects having
different value is:{comp}");
var comp1 = OddEven.CompareToTuple1(Convert.ToInt32(num));
Console.WriteLine($"Comparison of two Tuple objects having same
value is:{comp1}");

When we execute the preceding code, it will provide the output as follows:

Equals(Object): A public method that returns true/false, stating whether the
TupleValue instance is equal to the provided object. It returns true if successful.

Day 03 - What's New in C#

[88]

The following is the implementation:

public static bool EqualToTuple(int number)
{
 var oddEvenValueTuple =
 FindOddEvenBySingleNumber(number);
 var sameTupleValue =
 FindOddEvenBySingleNumberNamedElement(number);
 var res = oddEvenValueTuple.Equals(sameTupleValue);
 return res;//true if obj is a ValueTuple instance;
 otherwise, false.
}

Here is the calling method code snippet:

var num1 = Console.ReadLine();
var namedElement =
OddEven.FindOddEvenBySingleNumberNamedElement(Convert.ToInt32(n
um1));
Console.WriteLine($"Number:{namedElement.number} is
{namedElement.oddOrEven}.");
Console.WriteLine();
var equalToTuple = OddEven.EqualToTuple(Convert.ToInt32(num1));
Console.WriteLine($"Equality of two Tuple objects
is:{equalToTuple}");
var equalToObject =
OddEven.EqualToObject(Convert.ToInt32(num1));
Console.WriteLine($"Equality of one Tuple object with other non
tuple object is:{equalToObject}");

Finally, the output is as follows:

Equals(ValueTuple): A public method that always returns true and it's by
design. It is designed in this way because ValueTuple is a zero-element tuple,
hence when two ValueTuples perform equally having no element will always
return zero.

Day 03 - What's New in C#

[89]

GetHashCode(): A public method that returns the hash code of the object.
GetType(): A public method that provides the specific type of the current
instance.
ToString(): A public method that is a string representation of the ValueTuple
instance. However, as per design, it always returns zero.
Create(): A static method that creates a new ValueTuple (0 tuple). We can create
a 0 tuple as follows:

public static ValueTuple CreateValueTuple() =>
ValueTuple.Create();

Create<T1>(T1) ...
Create<T1, T2, T3, T4, T5, T6, T7, T8>(T1, T2, T3, T4, T5, T6, T7, T8): All
are static methods which create Value Tuples with 1-components (singleton) to 8-
components (octuple).
See the following code snippet showing singleton and octuple examples:

public static ValueTuple<int> CreateValueTupleSingleton(int
number) => ValueTuple.Create(number);
public static ValueTuple<int, int, int, int, int, int, int,
ValueTuple<int,string>> OctupleUsingCreate() =>
ValueTuple.Create(1, 2, 3, 4, 5, 6, 7, ValueTuple.Create(8,
IsOddNumber(8) ? "Odd" : "Even"));

You will need to update the NuGet package to Microsoft.Net.Compilers to
2.0 preview if you get compilation warnings. To do so, just select preview
and search Microsoft.Net.Compilers to 2.0 from NuGet Package Manager
[https:/ ​/​www. ​nuget. ​org/ ​packages/ ​Microsoft. ​Net.​Compilers/ ​].

Deconstruction
In the preceding section, we saw that multiple return values with the use of ValueTuple
are accessible with its items/element. Now think of a scenario where we want to directly
assign these element values to variables. Here, deconstruction helps us. Deconstruction is a
way in which we can unpackage the tuple that is returned by a method.

https://www.nuget.org/packages/Microsoft.Net.Compilers/
https://www.nuget.org/packages/Microsoft.Net.Compilers/
https://www.nuget.org/packages/Microsoft.Net.Compilers/
https://www.nuget.org/packages/Microsoft.Net.Compilers/
https://www.nuget.org/packages/Microsoft.Net.Compilers/
https://www.nuget.org/packages/Microsoft.Net.Compilers/
https://www.nuget.org/packages/Microsoft.Net.Compilers/
https://www.nuget.org/packages/Microsoft.Net.Compilers/
https://www.nuget.org/packages/Microsoft.Net.Compilers/
https://www.nuget.org/packages/Microsoft.Net.Compilers/
https://www.nuget.org/packages/Microsoft.Net.Compilers/
https://www.nuget.org/packages/Microsoft.Net.Compilers/
https://www.nuget.org/packages/Microsoft.Net.Compilers/
https://www.nuget.org/packages/Microsoft.Net.Compilers/
https://www.nuget.org/packages/Microsoft.Net.Compilers/
https://www.nuget.org/packages/Microsoft.Net.Compilers/
https://www.nuget.org/packages/Microsoft.Net.Compilers/
https://www.nuget.org/packages/Microsoft.Net.Compilers/

Day 03 - What's New in C#

[90]

There are mainly two ways to deconstruct a tuple:

Explicitly typed declaration: We explicitly declare the type of each field. Let's see
the following code example:

public static string ExplicitlyTypedDeconstruction(int num)
{
 (int number, string evenOdd) =
 FindOddEvenBySingleNumber(num);
 return $"Entered number:{number} is {evenOdd}.";
}

Implicitly typed declaration: We implicitly declare the type of each field. Let's see
the following code example:

public static string ImplicitlyTypedDeconstruction(int num)
{
 var (number, evenOdd) =
 FindOddEvenBySingleNumber(num);
 //Following deconstruct is also valid
 //(int number, var evenOdd) =
 FindOddEvenBySingleNumber(num);
 return $"Entered number:{number} is {evenOdd}.";
}

We can also deconstruct UserDefined/Custom types by implementing deconstruction using
out parameters; see the following code-example:

public static string UserDefinedTypeDeconstruction(int num)
{
 var customModel = new UserDefinedModel(num,
 IsOddNumber(num) ? "Odd" : "Even");
 var (number,oddEven) = customModel;
 return $"Entered number:{number} is {oddEven}.";
}

In the preceding code, the deconstruct method enables assignment from a
UserDefinedModel to one int and one string, which represent the properties number and
OddEven respectively.

Day 03 - What's New in C#

[91]

Tuple – important points to remember
In the preceding section, we discussed tuples and noticed how they help us in scenarios
where we need multiple values and complex data values (besides custom types). Here are
the important points that we should remember while working with tuples:

To work with tuples, we need the NuGet package System.ValueTuple.
ValueTuple (System.ValueTuple) is a struct instead of a class by design.
ValueTuple implements IEquatable<ValueTuple>,
IStructuralEquatable, IStructuralComparable, IComparable,

IComparable<ValueTuple> interfaces.
ValueTuples are mutable.
ValueTuples are flexible data containers and can be either unnamed or named:

Unnamed: When we do not provide any name for a field, these are
unnamed tuples and accessible using the default fields Item1,
Item2, and so on:

var oddNumber = (3, "Odd"); //Unnamed tuple

Named: When we explicitly provide some descriptive name to
fields:

var oddNumber = (number: 3, oddOrEven: "Odd"); //Named
Tuple

Assignment: When we assign one tuple to another, only values get assigned and
not field names:

Console.Write("Enter first number: ");
var userInputFirst = Console.ReadLine();
Console.Write("Enter second number: ");
var userInputSecond = Console.ReadLine();
var noNamed =
OddEven.FindOddEvenBySingleNumber(Convert.ToInt32(userInputFirs
t));
var named =
OddEven.FindOddEvenBySingleNumberNamedElement(Convert.ToInt32(u
serInputSecond));
Console.WriteLine($"First Number:{noNamed.Item1} is
{noNamed.Item2} using noNamed tuple.");
Console.WriteLine($"Second Number:{named.number} is
{named.oddOrEven} using Named tuple.");

Day 03 - What's New in C#

[92]

Console.WriteLine("Assigning 'Named' to 'NoNamed'");
 noNamed = named;
Console.WriteLine($"Number:{noNamed.Item1} is {named.Item2}
after assignment.");
Console.Write("Enter third number: ");
var userInputThird = Console.ReadLine();
var noNamed2 =
OddEven.FindOddEvenBySingleNumber(Convert.ToInt32(userInputThir
d));
Console.WriteLine($"Third Number:{noNamed2.Item1} is
{noNamed2.Item2} using second noNamed tuple.");
Console.WriteLine("Assigning 'second NoNamed' to 'Named'");
named = noNamed2;
Console.WriteLine($"Second Number:{named.number} is
{named.oddOrEven} after assignment.");

The output of the preceding code-snippet would be as follows:

In the preceding code-snippet, we can see that the output of an assigned tuple is the same
with an assigned tuple.

Pattern matching
In a general way, pattern matching is a way to compare contents in predefined formats in
an expression. The format is nothing but a combination of different matches.

In C# 7.0, pattern matching is a feature. With the use of this feature, we can implement
method dispatch on properties other than the type of an object.

Day 03 - What's New in C#

[93]

Pattern matching supports various expressions; let's discuss these with code-examples.

Patterns can be constant patterns: Type patterns or Var patterns.

is expression
The is expression enables the inspection of an object and its properties and determines
whether it satisfies the pattern:

public static string MatchingPatterUsingIs(object character)
{
 if (character is null)
 return $"{nameof(character)} is null. ";
 if (character is char)
 {
 var isVowel = IsVowel((char) character) ? "is a
 vowel" : "is a consonent";
 return $"{character} is char and {isVowel}. ";
 }
 if (character is string)
 {
 var chars = ((string) character).ToArray();
 var stringBuilder = new StringBuilder();
 foreach (var c in chars)
 {
 if (!char.IsWhiteSpace(c))
 {
 var isVowel = IsVowel(c) ? "is a vowel" : "is a
 consonent";
 stringBuilder.AppendLine($"{c} is char of string
 '{character}' and {isVowel}.");
 }
 }

 return stringBuilder.ToString();
 }
 throw new ArgumentException(
 "character is not a recognized data type.",
 nameof(character));
}

Day 03 - What's New in C#

[94]

The preceding code is not showing any fancy stuff and informs us whether the input
parameter is a specific type and a vowel or a consonant. You can see here we simply use the
is operator, that tells whether the object is of the same type or not.

The is operator (https:/ ​/​goo.​gl/ ​79sLW5) checks the object, and if the
object is of the same type, it returns true; if not, it returns false.

In the preceding code, while we are checking object for string, we need to explicitly cast
object to string and then pass this to our utility method, IsVowel(). In the preceding code,
we are doing two things: the first is checking the type of the incoming parameter and if the
type is the same then we are casting it to the desired type and performing actions as per our
case. Sometimes this creates confusion when we need to write more complex logic with
expressions.

C# 7.0 resolves this subtly to make our expression simpler. Now we can directly declare a
variable while checking the type in an expression; see the following code:

if (character is string str)
{
 var chars = str.ToArray();
 var stringBuilder = new StringBuilder();
 foreach (var c in chars)
 {
 if (!char.IsWhiteSpace(c))
 {
 var isVowel = IsVowel(c) ? "is a vowel" : "is
 a consonent";
 stringBuilder.AppendLine($"{c} is char of
 string '{character}' and {isVowel}.");
 }
 }

 return stringBuilder.ToString();
}

In the preceding code, which is updated where the is expression both tests the variable and
assigns it to a new variable of the desired type. With this change, there is no need to
explicitly cast the type ((string) character) as we were doing in the previous code.

Let us add one more condition to the preceding code:

if (character is int number)
return $"{nameof(character)} is int {number}.";

https://goo.gl/79sLW5
https://goo.gl/79sLW5
https://goo.gl/79sLW5
https://goo.gl/79sLW5
https://goo.gl/79sLW5
https://goo.gl/79sLW5
https://goo.gl/79sLW5
https://goo.gl/79sLW5
https://goo.gl/79sLW5

Day 03 - What's New in C#

[95]

In the preceding code, we are checking object for int, which is a struct. The preceding
condition works perfectly fine and produces the expected results.

Here is our complete code:

private static IEnumerable<char> Vowels => new[] {'a', 'e', 'i', 'o', 'u'};

public static string MatchingPatterUsingIs(object character)
{
 if (character is null)
 return $"{nameof(character)} is null. ";
 if (character is char)
 {
 var isVowel = IsVowel((char) character) ? "is a
 vowel" : "is a consonent";
 return $"{character} is char and {isVowel}. ";
 }
 if (character is string str)
 {
 var chars = str.ToArray();
 var stringBuilder = new StringBuilder();
 foreach (var c in chars)
 {
 if (!char.IsWhiteSpace(c))
 {
 var isVowel = IsVowel(c) ? "is a vowel" :
 "is a consonent";
 stringBuilder.AppendLine($"{c} is char of
 string '{character}' and {isVo
 }
 }

 return stringBuilder.ToString();
 }

 if (character is int number)
 return $"{nameof(character)} is int {number}.";

 throw new ArgumentException(
 "character is not a recognized data type.",
 nameof(character));
}

private static bool IsVowel(char character) =>
Vowels.Contains(char.ToLower(character));

Day 03 - What's New in C#

[96]

The is expression works perfectly fine with both value types as well as
reference types.

In the preceding code-example, the variables str and number are only assigned when the
respective expression matches results as true.

switch statement
We have already discussed the switch statement in Day 02. The switch pattern helps a
great deal as it uses any datatype for matching additionally case provides a way so, it
matched the condition.

The match expression is the same but in C# 7.0, this feature has been enhanced in three
different ways. Let us understand them using code examples.

constant pattern
In earlier versions of C#, the switch statement only supported the constant pattern, where
we evaluate some variable in the switch and then make a conditional call as per the
constant case. See the following code example, where we are trying to check whether
inputChar is of a specific length, which is computed in switch:

public static string ConstantPatternUsingSwitch(params char[] inputChar)
{
 switch (inputChar.Length)
 {

 case 0:
 return $"{nameof(inputChar)} contains no
 elements.";
 case 1:
 return $"'{inputChar[0]}' and
 {VowelOrConsonent(inputChar[0])}.";
 case 2:
 var sb = new
 StringBuilder().AppendLine($"'{inputChar[0]}'
 and {VowelOrConsonent(inputChar[0])}.");
 sb.AppendLine($"'{inputChar[1]}' and
 {VowelOrConsonent(inputChar[1])}.");
 return sb.ToString();
 case 3:

Day 03 - What's New in C#

[97]

 var sb1 = new
 StringBuilder().AppendLine($"'{inputChar[0]}'
 and {VowelOrConsonent(inputChar[0])}.");
 sb1.AppendLine($"'{inputChar[1]}' and
 {VowelOrConsonent(inputChar[1])}.");
 sb1.AppendLine($"'{inputChar[2]}' and
 {VowelOrConsonent(inputChar[2])}.");
 return sb1.ToString();
 case 4:
 var sb2 = new
 StringBuilder().AppendLine($"'{inputChar[0]}'
 and {VowelOrConsonent(inputChar[0])}.");
 sb2.AppendLine($"'{inputChar[1]}' and
 {VowelOrConsonent(inputChar[1])}.");
 sb2.AppendLine($"'{inputChar[2]}' and
 {VowelOrConsonent(inputChar[2])}.");
 sb2.AppendLine($"'{inputChar[3]}' and
 {VowelOrConsonent(inputChar[3])}.");
 return sb2.ToString();
 case 5:
 var sb3 = new
 StringBuilder().AppendLine($"'{inputChar[0]}'
 and {VowelOrConsonent(inputChar[0])}.");
 sb3.AppendLine($"'{inputChar[1]}' and
 {VowelOrConsonent(inputChar[1])}.");
 sb3.AppendLine($"'{inputChar[2]}' and
 {VowelOrConsonent(inputChar[2])}.");
 sb3.AppendLine($"'{inputChar[3]}' and
 {VowelOrConsonent(inputChar[3])}.");
 sb3.AppendLine($"'{inputChar[4]}' and
 {VowelOrConsonent(inputChar[4])}.");
 return sb3.ToString();
 default:
 return $"{inputChar.Length} exceeds from
 maximum input length.";
 }
}

In the preceding code, our main task is to check whether inputChar is a vowel or
consonant, and what we are doing here is we are first evaluating the length of the
inputChar and then performing operations as required, which leads to more work/code for
more complex conditions.

Day 03 - What's New in C#

[98]

type pattern
With the introduction of the type pattern, we can overcome the problem we were facing
with the constant pattern (in the previous section). Consider the following code:

public static string TypePatternUsingSwitch(IEnumerable<object>
inputObjects)
{
 var message = new StringBuilder();
 foreach (var inputObject in inputObjects)
 switch (inputObject)
 {
 case char c:
 message.AppendLine($"{c} is char and
 {VowelOrConsonent(c)}.");
 break;
 case IEnumerable<object> listObjects:
 foreach (var listObject in listObjects)
 message.AppendLine(MatchingPatterUsingIs(
 listObject));
 break;
 case null:
 break;
 }
 return message.ToString();
}

In the preceding code, now it's easy to perform the operation as per type pattern.

When clause in case expression
With the introduction of a when clause in case expressions, you can do special things in the
expression; see the following code:

public static string TypePatternWhenInCaseUsingSwitch(IEnumerable<object>
inputObjects)
{
 var message = new StringBuilder();
 foreach (var inputObject in inputObjects)
 switch (inputObject)
 {
 case char c:
 message.AppendLine($"{c} is char and
 {VowelOrConsonent(c)}.");
 break;
 case IEnumerable<object> listObjects when

Day 03 - What's New in C#

[99]

 listObjects.Any():
 foreach (var listObject in listObjects)
 message.AppendLine(MatchingPatterUsingIs
 (listObject));
 break;
 case IEnumerable<object> listInlist:
 break;
 case null:
 break;
 }
 return message.ToString();
}

In the preceding code, case with when makes sure that it will perform the operation only if
listObjects has some value.

The case statement requires that each case ends with a break, return,
or goto.

Local functions
Local functions can be achievable using function and action using anonymous methods in
prior versions, but there are still a few limitations:

Generics
ref and out parameters
params

Local functions are featured to declare within the block scope. These functions are very
powerful and have the same capability as any other normal function but with the difference
that they are scoped within the block these were declared.

Consider the following code-example:

public static string FindOddEvenBySingleNumber(int number) =>
IsOddNumber(number) ? "Odd" : "Even";

Day 03 - What's New in C#

[100]

The method FindOddEvenBySingleNumber() in the preceding code is simply returning a
number as Odd or Even for numbers greater than 1. This uses a private method,
IsOddNumber(), as shown here:

private static bool IsOddNumber(int number) => number >= 1 && number % 2 !=
0;

The method IsOddNumber() is a private method and is available within the class it
declared. Hence, its scope is within a class and not within a code block.

Let us see the following code-example of a local function:

public string FindOddEvenBySingleNumberUsingLocalFunction(int someInput)
{
 //Local function, scoped within
 FindOddEvenBySingleNumberUsingLocalFunction
 bool IsOddNumber(int number)
 {
 return number >= 1 && number % 2 != 0;
 }

 return IsOddNumber(someInput) ? "Odd" : "Even";
}

In the preceding code, the local function IsOddNumber() is performing the same action as
in the case of the private method in the previous section. But here, the scope of
IsOddNumber() is within the method
FindOddEvenBySingleNumberUsingLocalFunction(). Hence, it would not be available
outside this code block.

Literal improvements
When it comes to literals, we can think about the declaration of various variables constant,
which are sometimes the life of a method as these would be very important for a method or
to take any decision. And it leads to wrong decisions with the misreading of a numeric
constant. To overcome this confusion, C# 7.0 introduced two new features, binary literals
and digit separators.

Day 03 - What's New in C#

[101]

Binary literals
Binary digits are very important for performing complex operations. A constant of a binary
digit can be declared as 0b<binaryvalue>, where 0b tells us that this is a binary literal and
binary values is the value of your decimal digit. Here are a few examples:

//Binary literals
public const int Nineteen = 0b00010011;
public const int Ten = 0b00001010;
public const int Four = 0b0100;
public const int Eight = 0b1000;

Digit separator
With the introduction of digit separators, we can easily read long numeric, binary digits.
Digit separators can be used with both numeric and binary digits. For binary digits, the
digit separator, that is, underscore (_), applies on bit pattern, and for numeric, it can appear
anywhere but it is good to make 1,000 the separator. Take a look at the following examples:

//Digit separator - Binary numbers
public const int Hundred = 0b0110_0100;
public const int Fifty = 0b0011_0010;
public const int Twenty = 0b0001_0100;
//Numeric separator
public const long Billion = 100_000_0000;

The digit separator can be used with decimal, float, and double types as
well.

<p>Followings are the new features shipped with Visual Studio 2017 update 3 as a language
features of C# 7.1, we will discuss all the features as per: https:/ ​/​github. ​com/ ​dotnet/
roslyn/​blob/​master/ ​docs/ ​Language%20Feature%20Status. ​md

For more information new release of Visual Stuio 2017 refer to: https:/ ​/
www.​visualstudio. ​com/ ​en- ​us/ ​news/ ​releasenotes/ ​vs2017- ​relnotes

If you are looking how to set up your existing project or new project that is using C# 7.0 –
then you need not to worry, Visual Studio 2017 Update 3 is there to assist you. Whenever
you start using new feature of C# 7.1 – you need to follow these steps:

https://github.com/dotnet/roslyn/blob/master/docs/Language%20Feature%20Status.md
https://github.com/dotnet/roslyn/blob/master/docs/Language%20Feature%20Status.md
https://github.com/dotnet/roslyn/blob/master/docs/Language%20Feature%20Status.md
https://github.com/dotnet/roslyn/blob/master/docs/Language%20Feature%20Status.md
https://github.com/dotnet/roslyn/blob/master/docs/Language%20Feature%20Status.md
https://github.com/dotnet/roslyn/blob/master/docs/Language%20Feature%20Status.md
https://github.com/dotnet/roslyn/blob/master/docs/Language%20Feature%20Status.md
https://github.com/dotnet/roslyn/blob/master/docs/Language%20Feature%20Status.md
https://github.com/dotnet/roslyn/blob/master/docs/Language%20Feature%20Status.md
https://github.com/dotnet/roslyn/blob/master/docs/Language%20Feature%20Status.md
https://github.com/dotnet/roslyn/blob/master/docs/Language%20Feature%20Status.md
https://github.com/dotnet/roslyn/blob/master/docs/Language%20Feature%20Status.md
https://github.com/dotnet/roslyn/blob/master/docs/Language%20Feature%20Status.md
https://github.com/dotnet/roslyn/blob/master/docs/Language%20Feature%20Status.md
https://github.com/dotnet/roslyn/blob/master/docs/Language%20Feature%20Status.md
https://github.com/dotnet/roslyn/blob/master/docs/Language%20Feature%20Status.md
https://github.com/dotnet/roslyn/blob/master/docs/Language%20Feature%20Status.md
https://github.com/dotnet/roslyn/blob/master/docs/Language%20Feature%20Status.md
https://github.com/dotnet/roslyn/blob/master/docs/Language%20Feature%20Status.md
https://github.com/dotnet/roslyn/blob/master/docs/Language%20Feature%20Status.md
https://www.visualstudio.com/en-us/news/releasenotes/vs2017-relnotes
https://www.visualstudio.com/en-us/news/releasenotes/vs2017-relnotes
https://www.visualstudio.com/en-us/news/releasenotes/vs2017-relnotes
https://www.visualstudio.com/en-us/news/releasenotes/vs2017-relnotes
https://www.visualstudio.com/en-us/news/releasenotes/vs2017-relnotes
https://www.visualstudio.com/en-us/news/releasenotes/vs2017-relnotes
https://www.visualstudio.com/en-us/news/releasenotes/vs2017-relnotes
https://www.visualstudio.com/en-us/news/releasenotes/vs2017-relnotes
https://www.visualstudio.com/en-us/news/releasenotes/vs2017-relnotes
https://www.visualstudio.com/en-us/news/releasenotes/vs2017-relnotes
https://www.visualstudio.com/en-us/news/releasenotes/vs2017-relnotes
https://www.visualstudio.com/en-us/news/releasenotes/vs2017-relnotes
https://www.visualstudio.com/en-us/news/releasenotes/vs2017-relnotes
https://www.visualstudio.com/en-us/news/releasenotes/vs2017-relnotes
https://www.visualstudio.com/en-us/news/releasenotes/vs2017-relnotes
https://www.visualstudio.com/en-us/news/releasenotes/vs2017-relnotes
https://www.visualstudio.com/en-us/news/releasenotes/vs2017-relnotes
https://www.visualstudio.com/en-us/news/releasenotes/vs2017-relnotes
https://www.visualstudio.com/en-us/news/releasenotes/vs2017-relnotes
https://www.visualstudio.com/en-us/news/releasenotes/vs2017-relnotes

Day 03 - What's New in C#

[102]

Visual Studio will warn about existing version support and suggest to upgrade1.
your project if you want to use new feature of C# 7.1.
Just click on yellow bulb and select best option fits for your requirement and2.
you’re good to go with new C# 7.1.

Following image tells you two-steps to get ready with C# 7.1:

Let us start discussion on new features of Language C# 7.1:

Async Main
A new feature of language C# 7.1 that enables entry-point that is, Main of an application.
Async main enables main method to be awaitable that mean Main method is now
asynchronous to get Task or Task<int>. With this feature followings are valid entry-
points:

static Task Main()
{
 //stuff goes here
}
static Task<int> Main()
{
 //stuff goes here
}
static Task Main(string[] args)
{
 //stuff goes here
}
static Task<int> Main(string[] args)

Day 03 - What's New in C#

[103]

{
 //stuff goes here
}

Restrictions while using new signatures
You can use these new signature entry-points and these marked as valid if no
overload of previous signature is present that means if you are using an existing
entry-point.

public static void Main()
{
 NewMain().GetAwaiter().GetResult();
}
private static async Task NewMain()
{
 //async stuff goes here
}

This is not mandatory to mark your entry-point as async that means you can still
use the existing async entry-point:

private static void Main(string[] args)
{
 //stuff goes here
}

There may be more usage of the entry-point that you can incorporate in
the application – refer to official document of this feature: https:/ ​/
github. ​com/ ​dotnet/ ​csharplang/ ​blob/ ​master/ ​proposals/ ​async- ​main. ​md

Default expressions
A new expression introduced in C# 7.1 that is default literal. With the introduction of this
new literal, the expression can be implicitly converted to any type and produces result as
default value of the type.

New default literal is different than old default(T). Earlier default
convert the target type of T but newer one can convert any type.

https://github.com/dotnet/csharplang/blob/master/proposals/async-main.md
https://github.com/dotnet/csharplang/blob/master/proposals/async-main.md
https://github.com/dotnet/csharplang/blob/master/proposals/async-main.md
https://github.com/dotnet/csharplang/blob/master/proposals/async-main.md
https://github.com/dotnet/csharplang/blob/master/proposals/async-main.md
https://github.com/dotnet/csharplang/blob/master/proposals/async-main.md
https://github.com/dotnet/csharplang/blob/master/proposals/async-main.md
https://github.com/dotnet/csharplang/blob/master/proposals/async-main.md
https://github.com/dotnet/csharplang/blob/master/proposals/async-main.md
https://github.com/dotnet/csharplang/blob/master/proposals/async-main.md
https://github.com/dotnet/csharplang/blob/master/proposals/async-main.md
https://github.com/dotnet/csharplang/blob/master/proposals/async-main.md
https://github.com/dotnet/csharplang/blob/master/proposals/async-main.md
https://github.com/dotnet/csharplang/blob/master/proposals/async-main.md
https://github.com/dotnet/csharplang/blob/master/proposals/async-main.md
https://github.com/dotnet/csharplang/blob/master/proposals/async-main.md
https://github.com/dotnet/csharplang/blob/master/proposals/async-main.md
https://github.com/dotnet/csharplang/blob/master/proposals/async-main.md
https://github.com/dotnet/csharplang/blob/master/proposals/async-main.md
https://github.com/dotnet/csharplang/blob/master/proposals/async-main.md
https://github.com/dotnet/csharplang/blob/master/proposals/async-main.md
https://github.com/dotnet/csharplang/blob/master/proposals/async-main.md

Day 03 - What's New in C#

[104]

Following is the code-snippet that is showing both old and new default:

//Code removed
case 8:
 Clear();
 WriteLine("C# 7.1 feature: default expression");
 int thisIsANewDefault = default;
 var thisIsAnOlderDefault = default(int);
 WriteLine($"New default:{thisIsANewDefault}. Old
 default:{thisIsAnOlderDefault}");
 PressAnyKey();
 break;
//Code removed

In the preceding code when we are writing int thisIsANewDefault = default; an
expression that is valid in C# 7.1 and it implicitly convert the expression to type int and
assign a default value that is 0 (zero) to thisIsANewDefault. The notable point here is that
default literal implicitly detect the type of thisIsANewDefault and set the value. On the
other hand, we need to explicitly tell the target type to set the default value in expression
var thisIsAnOlderDefault = default(int);.

The preceding code generates following output:

Day 03 - What's New in C#

[105]

There are multiple implementations of new default literal so, you can use the same with
following:

Member variables
New default expression can be applied to assign default values to variables, followings
are the various ways:

int thisIsANewDefault = default;
int thisIsAnOlderDefault = default(int);
var thisIsAnOlderDefaultAndStillValid = default(int);
var thisIsNotValid = default; //Not valid, as we cannot assign default to
implicit-typed variable

Constants
Similar to variables, with the use of default we can declare constants, followings are the
various ways:

const int thisIsANewDefaultConst = default; //valid
const int thisIsAnOlderDefaultCont = default(int); //valid
const int? thisIsInvalid = default; //Invalid, as nullable cannot be
declared const

There are more scenarios where you can use this new default literal viz.
optional parameter in method that is, For more information, refer to:
https:/ ​/​github. ​com/ ​dotnet/ ​csharplang/ ​blob/ ​master/ ​meetings/ ​2017/
LDM-​2017- ​03- ​07. ​md

Infer tuple names
With the introduction of this new feature we you do not require to explicitly declare the
tuple candidate names. We discussed Tuples in previous section Tuples and Deconstructions.
Infer tuple names feature is an extended to the tuple values introduced in C# 7.0.

To work with this new feature, you require updated NuGet package of ValueTuple that
you’ve installed in previous section Tuple. To update the NuGet package, go to NuGet
Package manager and click on Update tab and then click update latest version. Following
screenshot provides the complete information:

https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-03-07.md
https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-03-07.md
https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-03-07.md
https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-03-07.md
https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-03-07.md
https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-03-07.md
https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-03-07.md
https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-03-07.md
https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-03-07.md
https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-03-07.md
https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-03-07.md
https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-03-07.md
https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-03-07.md
https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-03-07.md
https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-03-07.md
https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-03-07.md
https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-03-07.md
https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-03-07.md
https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-03-07.md
https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-03-07.md
https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-03-07.md
https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-03-07.md
https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-03-07.md
https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-03-07.md
https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-03-07.md
https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-03-07.md
https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-03-07.md
https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-03-07.md

Day 03 - What's New in C#

[106]

Following code-snippet shows, various ways to declare the tuple:

public static void InferTupleNames(int num1, int num2)
{
 (int, int) noNamed = (num1, num2);
 (int, int) IgnoredName = (A:num1, B:num2);
 (int a, int b) typeNamed = (num1, num2);
 var named = (num1, num2);
 var noNamedVariation = (num1, num1);
 var explicitNaming = (n: num1, num1);
 var partialnamed = (num1, 5);
}

The preceding code is self-explanatory, Tuple noNamed does not have any member name
and can be accessed using item1 and item2. Similarly, in Tuple IgnoredName all defined
member names will be ignored as declaration is not defined with a member name.
Following code-snippet tells the complete story of how we can access various tuples:

public static void InferTupleNames(int num1, int num2)
{
 (int, int) noNamed = (num1, num2);
 Console.WriteLine($"NoNamed:{noNamed.Item1},
 {noNamed.Item2}");
 (int, int) ignoredName = (A:num1, B:num2);
 Console.WriteLine($"IgnoredName:{ignoredName.Item1}
 ,{ignoredName.Item2}");
 (int a, int b) typeNamed = (num1, num2);
 Console.WriteLine($"typeNamed using default member-
 names:{typeNamed.Item1}
 {typeNamed.Item2}");
 Console.WriteLine($"typeNamed:{typeNamed.a},
 {typeNamed.b}");

Day 03 - What's New in C#

[107]

 var named = (num1, num2);
 Console.WriteLine($"named using default member-names
 :{named.Item1},{named.Item2}");
 Console.WriteLine($"named:{named.num1},{named.num2}");
 var noNamedVariation = (num1, num1);
 Console.WriteLine($"noNamedVariation:
 {noNamedVariation.Item1},{noNamedVariation.Item2}");
 var explicitNaming = (n: num1, num1);
 Console.WriteLine($"explicitNaming:{explicitNaming.n},
 {explicitNaming.num1}");
 var partialnamed = (num1, 5);
 Console.WriteLine($"partialnamed:{partialnamed.num1},
 {partialnamed.Item2}");
}

The preceding code produces the following output:

Day 03 - What's New in C#

[108]

There is more variation where you can use this new feature for more info,
refer: https:/ ​/ ​github. ​com/ ​dotnet/ ​roslyn/ ​blob/ ​master/ ​docs/ ​features/
tuples. ​md

Other features supposed to release
There would be more features with the final release of programming language C# 7.1 in
addition to previous, following are the features that encountered a bug or partially
implemented as on date.

Pattern-matching with generics
The pattern-matching with generic is proposed here: https:/ ​/​github. ​com/ ​dotnet/
csharplang/​blob/ ​master/ ​proposals/ ​generics- ​pattern- ​match. ​md as new feature of C# 7.1
that encountered a bug and can be seen here: https:/ ​/ ​github. ​com/ ​dotnet/ ​roslyn/ ​issues/
16195

The implementation of this feature would be based on as operator as detailed here: https:/
/​github.​com/​dotnet/ ​csharplang/ ​blob/ ​master/ ​spec/ ​expressions. ​md#the- ​as- ​operator

Reference assemblies
Reference assemblies feature is yet to be incorporated within IDE, you can refer: https:/ ​/
github.​com/​dotnet/ ​roslyn/ ​blob/ ​master/ ​docs/ ​features/ ​refout. ​md here for more details.

Hands-on exercises
Answer the following questions, which cover the concepts of today's learning:

What are ValueTuple types?1.
ValueTuples are mutable; prove with an example.2.
Create a ValueTuple of 10 elements.3.

https://github.com/dotnet/roslyn/blob/master/docs/features/tuples.md
https://github.com/dotnet/roslyn/blob/master/docs/features/tuples.md
https://github.com/dotnet/roslyn/blob/master/docs/features/tuples.md
https://github.com/dotnet/roslyn/blob/master/docs/features/tuples.md
https://github.com/dotnet/roslyn/blob/master/docs/features/tuples.md
https://github.com/dotnet/roslyn/blob/master/docs/features/tuples.md
https://github.com/dotnet/roslyn/blob/master/docs/features/tuples.md
https://github.com/dotnet/roslyn/blob/master/docs/features/tuples.md
https://github.com/dotnet/roslyn/blob/master/docs/features/tuples.md
https://github.com/dotnet/roslyn/blob/master/docs/features/tuples.md
https://github.com/dotnet/roslyn/blob/master/docs/features/tuples.md
https://github.com/dotnet/roslyn/blob/master/docs/features/tuples.md
https://github.com/dotnet/roslyn/blob/master/docs/features/tuples.md
https://github.com/dotnet/roslyn/blob/master/docs/features/tuples.md
https://github.com/dotnet/roslyn/blob/master/docs/features/tuples.md
https://github.com/dotnet/roslyn/blob/master/docs/features/tuples.md
https://github.com/dotnet/roslyn/blob/master/docs/features/tuples.md
https://github.com/dotnet/roslyn/blob/master/docs/features/tuples.md
https://github.com/dotnet/roslyn/blob/master/docs/features/tuples.md
https://github.com/dotnet/roslyn/blob/master/docs/features/tuples.md
https://github.com/dotnet/roslyn/blob/master/docs/features/tuples.md
https://github.com/dotnet/roslyn/blob/master/docs/features/tuples.md
https://github.com/dotnet/csharplang/blob/master/proposals/generics-pattern-match.md
https://github.com/dotnet/csharplang/blob/master/proposals/generics-pattern-match.md
https://github.com/dotnet/csharplang/blob/master/proposals/generics-pattern-match.md
https://github.com/dotnet/csharplang/blob/master/proposals/generics-pattern-match.md
https://github.com/dotnet/csharplang/blob/master/proposals/generics-pattern-match.md
https://github.com/dotnet/csharplang/blob/master/proposals/generics-pattern-match.md
https://github.com/dotnet/csharplang/blob/master/proposals/generics-pattern-match.md
https://github.com/dotnet/csharplang/blob/master/proposals/generics-pattern-match.md
https://github.com/dotnet/csharplang/blob/master/proposals/generics-pattern-match.md
https://github.com/dotnet/csharplang/blob/master/proposals/generics-pattern-match.md
https://github.com/dotnet/csharplang/blob/master/proposals/generics-pattern-match.md
https://github.com/dotnet/csharplang/blob/master/proposals/generics-pattern-match.md
https://github.com/dotnet/csharplang/blob/master/proposals/generics-pattern-match.md
https://github.com/dotnet/csharplang/blob/master/proposals/generics-pattern-match.md
https://github.com/dotnet/csharplang/blob/master/proposals/generics-pattern-match.md
https://github.com/dotnet/csharplang/blob/master/proposals/generics-pattern-match.md
https://github.com/dotnet/csharplang/blob/master/proposals/generics-pattern-match.md
https://github.com/dotnet/csharplang/blob/master/proposals/generics-pattern-match.md
https://github.com/dotnet/csharplang/blob/master/proposals/generics-pattern-match.md
https://github.com/dotnet/csharplang/blob/master/proposals/generics-pattern-match.md
https://github.com/dotnet/csharplang/blob/master/proposals/generics-pattern-match.md
https://github.com/dotnet/csharplang/blob/master/proposals/generics-pattern-match.md
https://github.com/dotnet/csharplang/blob/master/proposals/generics-pattern-match.md
https://github.com/dotnet/csharplang/blob/master/proposals/generics-pattern-match.md
https://github.com/dotnet/roslyn/issues/16195
https://github.com/dotnet/roslyn/issues/16195
https://github.com/dotnet/roslyn/issues/16195
https://github.com/dotnet/roslyn/issues/16195
https://github.com/dotnet/roslyn/issues/16195
https://github.com/dotnet/roslyn/issues/16195
https://github.com/dotnet/roslyn/issues/16195
https://github.com/dotnet/roslyn/issues/16195
https://github.com/dotnet/roslyn/issues/16195
https://github.com/dotnet/roslyn/issues/16195
https://github.com/dotnet/roslyn/issues/16195
https://github.com/dotnet/roslyn/issues/16195
https://github.com/dotnet/roslyn/issues/16195
https://github.com/dotnet/roslyn/issues/16195
https://github.com/dotnet/csharplang/blob/master/spec/expressions.md#the-as-operator
https://github.com/dotnet/csharplang/blob/master/spec/expressions.md#the-as-operator
https://github.com/dotnet/csharplang/blob/master/spec/expressions.md#the-as-operator
https://github.com/dotnet/csharplang/blob/master/spec/expressions.md#the-as-operator
https://github.com/dotnet/csharplang/blob/master/spec/expressions.md#the-as-operator
https://github.com/dotnet/csharplang/blob/master/spec/expressions.md#the-as-operator
https://github.com/dotnet/csharplang/blob/master/spec/expressions.md#the-as-operator
https://github.com/dotnet/csharplang/blob/master/spec/expressions.md#the-as-operator
https://github.com/dotnet/csharplang/blob/master/spec/expressions.md#the-as-operator
https://github.com/dotnet/csharplang/blob/master/spec/expressions.md#the-as-operator
https://github.com/dotnet/csharplang/blob/master/spec/expressions.md#the-as-operator
https://github.com/dotnet/csharplang/blob/master/spec/expressions.md#the-as-operator
https://github.com/dotnet/csharplang/blob/master/spec/expressions.md#the-as-operator
https://github.com/dotnet/csharplang/blob/master/spec/expressions.md#the-as-operator
https://github.com/dotnet/csharplang/blob/master/spec/expressions.md#the-as-operator
https://github.com/dotnet/csharplang/blob/master/spec/expressions.md#the-as-operator
https://github.com/dotnet/csharplang/blob/master/spec/expressions.md#the-as-operator
https://github.com/dotnet/csharplang/blob/master/spec/expressions.md#the-as-operator
https://github.com/dotnet/csharplang/blob/master/spec/expressions.md#the-as-operator
https://github.com/dotnet/csharplang/blob/master/spec/expressions.md#the-as-operator
https://github.com/dotnet/csharplang/blob/master/spec/expressions.md#the-as-operator
https://github.com/dotnet/csharplang/blob/master/spec/expressions.md#the-as-operator
https://github.com/dotnet/csharplang/blob/master/spec/expressions.md#the-as-operator
https://github.com/dotnet/csharplang/blob/master/spec/expressions.md#the-as-operator
https://github.com/dotnet/roslyn/blob/master/docs/features/refout.md
https://github.com/dotnet/roslyn/blob/master/docs/features/refout.md
https://github.com/dotnet/roslyn/blob/master/docs/features/refout.md
https://github.com/dotnet/roslyn/blob/master/docs/features/refout.md
https://github.com/dotnet/roslyn/blob/master/docs/features/refout.md
https://github.com/dotnet/roslyn/blob/master/docs/features/refout.md
https://github.com/dotnet/roslyn/blob/master/docs/features/refout.md
https://github.com/dotnet/roslyn/blob/master/docs/features/refout.md
https://github.com/dotnet/roslyn/blob/master/docs/features/refout.md
https://github.com/dotnet/roslyn/blob/master/docs/features/refout.md
https://github.com/dotnet/roslyn/blob/master/docs/features/refout.md
https://github.com/dotnet/roslyn/blob/master/docs/features/refout.md
https://github.com/dotnet/roslyn/blob/master/docs/features/refout.md
https://github.com/dotnet/roslyn/blob/master/docs/features/refout.md
https://github.com/dotnet/roslyn/blob/master/docs/features/refout.md
https://github.com/dotnet/roslyn/blob/master/docs/features/refout.md
https://github.com/dotnet/roslyn/blob/master/docs/features/refout.md
https://github.com/dotnet/roslyn/blob/master/docs/features/refout.md
https://github.com/dotnet/roslyn/blob/master/docs/features/refout.md
https://github.com/dotnet/roslyn/blob/master/docs/features/refout.md
https://github.com/dotnet/roslyn/blob/master/docs/features/refout.md
https://github.com/dotnet/roslyn/blob/master/docs/features/refout.md

Day 03 - What's New in C#

[109]

Create a user-defined class employee as follows and then write a program to4.
deconstruct user-defined types:

public class employee
{
public Guid EmplId { get; set; }
public String First { get; set; }
public string Last { get; set; }
public char Sex { get; set; }
public string DepartmentId { get; set; }
public string Designation { get; set; }
}

Create a class of various constants using digit separators and implement these5.
constants to a function ToDecimal() and ToBinary().
What are local functions? How are they different from private functions?6.
Rewrite the OddEven program using generic local functions.7.
Rewrite the OddEven program using the type pattern in switch case.8.
Write a program to find out OddEven with the utilization of inferred Tuple names9.
feature of language C# 7.1.
What is default expression (C# 7.1), elaborate with the help of program?10.

Revisiting Day 03
Today, we have discussed all the new features introduced in C# 7.0 with code examples. We
also understood the important points and usage of these features.

We discussed how ValueTuples help us gather the data information and the cases where we
are expecting multiple outputs from a method. One of the good points of ValueTuple is
that this is a mutable and ValueType. There are a few public and static methods
provided by System.ValueTuple and we can achieve many complex scenarios with the
use of these.

Then we came to know the advantage and power of pattern matching; this helps the coder
perform various complex conditional scenarios which were not possible in prior versions of
the C# language. The type pattern and the when clause in case statements makes this
feature superb.

Day 03 - What's New in C#

[110]

Local functions are one of the most important features introduced in C# 7.0. They help a lot
in a scenario, where we need to make our code symmetric, so you can read code perfectly
and when we do not require the method outside, or we do not need to reuse this operation
which is required within a block scope.

With the literal improvements, now we can declare binary numbers as constants and use
them as we use other variables. The capability of adding the digit separator underscore (_)
made this feature more useful.

Finally, we have gone through the new features released for language C# 7.1 as a part of
Visual Studio update 3.

Earlier, in plan there were more features which were planned to release but the final release
came with preceding new features. Next release is in plan and there are more robust
features which are yet to come. You can watch the plan and next release feature list here:
https:/​/​github.​com/ ​dotnet/ ​csharplang/ ​tree/ ​master/ ​proposals.

https://github.com/dotnet/csharplang/tree/master/proposals
https://github.com/dotnet/csharplang/tree/master/proposals
https://github.com/dotnet/csharplang/tree/master/proposals
https://github.com/dotnet/csharplang/tree/master/proposals
https://github.com/dotnet/csharplang/tree/master/proposals
https://github.com/dotnet/csharplang/tree/master/proposals
https://github.com/dotnet/csharplang/tree/master/proposals
https://github.com/dotnet/csharplang/tree/master/proposals
https://github.com/dotnet/csharplang/tree/master/proposals
https://github.com/dotnet/csharplang/tree/master/proposals
https://github.com/dotnet/csharplang/tree/master/proposals
https://github.com/dotnet/csharplang/tree/master/proposals
https://github.com/dotnet/csharplang/tree/master/proposals
https://github.com/dotnet/csharplang/tree/master/proposals
https://github.com/dotnet/csharplang/tree/master/proposals
https://github.com/dotnet/csharplang/tree/master/proposals
https://github.com/dotnet/csharplang/tree/master/proposals

4
Day 04 - Discussing C# Class

Members
We are in day four of our seven-day learning series. On day two, we discussed the typical
C# program, and you understood how to compile and execute the program. We discussed
the Main method and its use. We also discussed the reserved keywords of language C#, and
then, we got an overview of classes and structures in C#. On day three, we discussed all the
new features introduced in C#7.0.

In this chapter, the fundamentals of C# methods and properties will be explained, and we
will also cover the concept of indexers in C#. The string manipulation discussed on day two
will be extended through RegEx, and we will explain why it is powerful. File management
will be covered along with some medium-level file system observers.

Today, we will cover C# classes in more depth. This chapter will cover the following topics:

Modifiers
Methods
Properties
Indexers
File I/O
Exception handling
Discussing regular expression and its importance

On day two, we discussed a typical C# program, and we discussed how a program can be
compiled and executed. What is the use/importance of the Main method? We will carry
forward the same discussion and start our day four.

Day 04 - Discussing C# Class Members

[112]

Before we start, let's go through the steps of our program in the String calculator (https:/ ​/
github.​com/​garora/ ​TDD- ​Katas/ ​tree/ ​develop/ ​Src/ ​cs/ ​StringCalculator). There is a
simple requirement to add numbers that are provided as a string. Here is a simple code
snippet on the basis of this one-liner requirement that does not mention how many
numbers are needed to be supplied in a string:

namespace Day04
{
 class Program
 {
 static void Main(string[] args)
 {
 Write("Enter number1:");
 var num1 = ReadLine();
 Write("Enter number2:");
 var num2 = ReadLine();
 var sum = Convert.ToInt32(num1) +
 Convert.ToInt32(num2);
 Write($"Sum of {num1} and {num2} is {sum}");
 ReadLine();
 }
 }
}

We will get the following output when we run the preceding code:

The preceding code is working fine and giving us the expected results. The requirements
that we discussed previously are very limited and vague. Let's elaborate on the initial
requirement:

Create a simple String calculator with the Add operation:
This operation should only accept input in a string data type.
The Add operation can take zero, one, or two comma-separated
numbers and will return their sum, for example, 1 or 1,2.
The Add operation should accept an empty string, but for an empty
string, it will return zero.

https://github.com/garora/TDD-Katas/tree/develop/Src/cs/StringCalculator
https://github.com/garora/TDD-Katas/tree/develop/Src/cs/StringCalculator
https://github.com/garora/TDD-Katas/tree/develop/Src/cs/StringCalculator
https://github.com/garora/TDD-Katas/tree/develop/Src/cs/StringCalculator
https://github.com/garora/TDD-Katas/tree/develop/Src/cs/StringCalculator
https://github.com/garora/TDD-Katas/tree/develop/Src/cs/StringCalculator
https://github.com/garora/TDD-Katas/tree/develop/Src/cs/StringCalculator
https://github.com/garora/TDD-Katas/tree/develop/Src/cs/StringCalculator
https://github.com/garora/TDD-Katas/tree/develop/Src/cs/StringCalculator
https://github.com/garora/TDD-Katas/tree/develop/Src/cs/StringCalculator
https://github.com/garora/TDD-Katas/tree/develop/Src/cs/StringCalculator
https://github.com/garora/TDD-Katas/tree/develop/Src/cs/StringCalculator
https://github.com/garora/TDD-Katas/tree/develop/Src/cs/StringCalculator
https://github.com/garora/TDD-Katas/tree/develop/Src/cs/StringCalculator
https://github.com/garora/TDD-Katas/tree/develop/Src/cs/StringCalculator
https://github.com/garora/TDD-Katas/tree/develop/Src/cs/StringCalculator
https://github.com/garora/TDD-Katas/tree/develop/Src/cs/StringCalculator
https://github.com/garora/TDD-Katas/tree/develop/Src/cs/StringCalculator
https://github.com/garora/TDD-Katas/tree/develop/Src/cs/StringCalculator
https://github.com/garora/TDD-Katas/tree/develop/Src/cs/StringCalculator
https://github.com/garora/TDD-Katas/tree/develop/Src/cs/StringCalculator
https://github.com/garora/TDD-Katas/tree/develop/Src/cs/StringCalculator

Day 04 - Discussing C# Class Members

[113]

The preceding requirements are unanswered in our previous code snippet. To achieve these
requirements, we should tweak our code snippet, which we will discuss in the upcoming
sections.

Modifiers
Modifiers are nothing but special keywords in C# that are used to declare how a specific
method, property, or variable could be accessible. In this section, we will discuss modifiers
and discuss their usage with the use of code examples.

The whole point of modifiers is encapsulation. It's about how objects get
simplified by encapsulations, and modifiers are like knobs saying how
much you want to show to some clients, and how much not to. To
understand encapsulation, refer to day seven, Encapsulation.

Access modifiers and accessibility levels
Access modifiers tell us how and where a member, declared type, and so on can be accessed
or available. The following discussion will give you a broader idea of all access modifiers
and accessibility levels.

public
A public modifier helps us define the scope of the member without any restrictions. This
means if we define any class, method, property, or variable with a public access modifier,
the member can be accessed without any restrictions for other members.

The accessibility level of the type or the member of derived type that is
declared using the public access modifier is unrestricted, which means it
can be accessible anywhere.

To understand unrestricted accessibility levels, let's consider following code example:

namespace Day04
{
 internal class StringCalculator
 {
 public string Num1 { get; set; }
 public string Num2 { get; set; }

Day 04 - Discussing C# Class Members

[114]

 public int Sum() => Convert.ToInt32(Num1) + Convert.ToInt32(Num2);
 }
}

In the preceding code snippet, we declared two properties, Num1 and Num2, and one method
Sum(), with the access modifier public. This means these properties and the method is
accessible to other classes as well. Here is the code snippet that consumes the preceding
class:

namespace Day04
{
 class Program
 {
 static void Main(string[] args)
 {
 StringCalculator calculator = new
 StringCalculator();
 Write("Enter number1:");
 calculator.Num1 = ReadLine();
 Write("Enter number2:");
 calculator.Num2 = ReadLine();
 Write($"Sum of {calculator.Num1} and
 {calculator.Num2} is {calculator.Sum()}");
 ReadLine();
 }
 }
}

The preceding code snippet will run perfectly and produce the expected results. When you
run the preceding code, it will show results, as in the following image:

Day 04 - Discussing C# Class Members

[115]

protected
A protected modifier helps us define the scope of the member without the class or type
defined/created from the class where the member is defined. In other words, when we
define the variable, property, or method with the access modifier protected, this means
the scope of availability of these are within the class in which all these members are defined.

The accessibility level of the type or the member of derived type that is
declared using protected access modifiers is restricted, which means it can
only be accessible within the class or from the derived types that are
created from class of the member. The protected modifier is importantly
and actively responsible in OOPS using C#. You should get an idea of
inheritance. Refer to day seven, Inheritance.

To understand protected accessibility levels, let's consider the following code example:

namespace Day04
{
 class StringCalculator
 {

 protected string Num1 { get; set; }
 protected string Num2 { get; set; }

 }

 class StringCalculatorImplementation : StringCalculator
 {
 public void Sum()
 {
 StringCalculatorImplementation calculator =
 new StringCalculatorImplementation();

 Write("Enter number1:");

 calculator.Num1 = ReadLine();

 Write("Enter number2:");

 calculator.Num2 = ReadLine();

 int sum = Convert.ToInt32(calculator.Num1) +
 Convert.ToInt32(calculator.Num2);

 Write($"Sum of {calculator.Num1} and
 {calculator.Num2} is {sum}");
 }

Day 04 - Discussing C# Class Members

[116]

 }
}

In the preceding code, we have two classes: StringCalculator and
StringCalculatorImplementation. Properties are defined with the protected access
modifier in the StringCalculator class. This means these properties are only accessible
either from the StringCalculator class or the StringCalculatorImplementation (this
is a derived type of the StringCalculatorclass). The preceding code will produce the
following output:

The following code will not work and will produce a compile-time error:

class StringCalculatorImplementation : StringCalculator
{
 readonly StringCalculator _stringCalculator = new
 StringCalculator();
 public int Sum()
 {
 var num=_stringCalculator.Num1; //will not work
 var number=_stringCalculator.Num2; //will not work

 //other stuff
 }
}

Day 04 - Discussing C# Class Members

[117]

In the preceding code, we tried to access Num1 and Num2 from the
StringCalculatorImplementation class by creating an instance of the
StringCalculator class. This is not possible and will not work. Refer to the following
screenshot:

internal
An internal modifier helps us define the scope of the member for the same assembly.
Members that are defined using internal access modifiers cannot access outside of the
assembly where they are defined.

The accessibility level of the type or the member that is declared using
internal access modifiers is restricted for outside the assembly. This means
these members are not allowed to access from external assemblies.

To understand internal accessibility levels, let's consider the following code example:

namespace ExternalLib
{
 internal class StringCalculatorExternal
 {
 public string Num1 { get; set; }
 public string Num2 { get; set; }
 }
}

The code belongs to the assembly ExternalLib that contains a
StringCalculatorExternal class of internal access modifiers with two properties, Num1
and Num2, defined with the public access modifier. It will not work if we call this code
from some other assembly. Let's consider the following code snippet:

namespace Day04
{
 internal class StringCalculator
 {

Day 04 - Discussing C# Class Members

[118]

 public int Sum()
 {
 //This will not work
 StringCalculatorExternal externalLib = new
StringCalculatorExternal();
 return Convert.ToInt32(externalLib.Num1) +
Convert.ToInt32(externalLib.Num2);
 }
 }
}

The preceding code is of a separate assembly day four, and we are trying to call a
StringCalculatorExternal class of assembly ExternalLib that is not possible, as we
have defined this class as internal. This code will throw the following error:

composite
When we use protected and internal access modifier jointly i.e. protected internal this
combinition of modifiers known as composite modifier.

protected internal means protected or internal and not protected and
internal. This means a member can be accessed from any class within the
same assembly.

Day 04 - Discussing C# Class Members

[119]

To understand protected internal accessibility levels, let's consider the following code
example:

namespace Day04
{
 internal class StringCalculator
 {
 protected internal string Num1 { get; set; }
 protected internal string Num2 { get; set; }
 }

 internal class StringCalculatorImplement :
 StringCalculator
 {
 public int Sum() => Convert.ToInt32(Num1) + Convert.ToInt32(Num2);
 }
}

The preceding code is for assembly day four with a class StringCalculatorImplement,
that is, the inherited StringCalculator class (this class has two properties with the
protected internal access modifier). Let's consider code from the same assembly:

namespace Day04
{
 internal class Program
 {
 private static void Main(string[] args)
 {
 var calculator = new
 StringCalculatorImplement();
 Write("Enter number1:");
 calculator.Num1 = ReadLine();
 Write("Enter number2:");
 calculator.Num2 = ReadLine();

 Write($"Sum of {calculator.Num1} and
 {calculator.Num2} is {calculator.Sum()}");
 ReadLine();
 }
 }
}

Day 04 - Discussing C# Class Members

[120]

The preceding code will produce the following output:

private
A private modifier is the lowest scope of the member. This means whenever a member is
defined using the private modifier, that member is only accessible within the class where
it is defined.

private means restricted access, and the member can only be accessed
from within class or its nested types, if defined.

To understand private accessibility levels, let's consider the following code example:

internal class StringCalculator
{
 private string Num1 { get; set; }
 private string Num2 { get; set; }

 public int Sum() => Convert.ToInt32(Num1) + Convert.ToInt32(Num2);
}

Day 04 - Discussing C# Class Members

[121]

In the preceding code properties, Num1 and Num2 are not accessible to outside the
StringCalculator class. The following code will not work:

internal class StringCalculatorAnother
{
 private readonly StringCalculator _calculator;

 public StringCalculatorAnother(StringCalculator
 calculator)
 {
 _calculator = calculator;
 }

 public int Sum() => Convert.ToInt32(_calculator.Num1) +
Convert.ToInt32(_calculator.Num2);
}

The preceding code will throw a compile-time error as in the following screenshot:

Day 04 - Discussing C# Class Members

[122]

Rules for the access modifier
We have discussed the access modifier and accessibility with the use of this access modifier.
Now, there are certain rules we should follow while working with these access modifiers
that are discussed here:

Combination restriction: A restriction is there while using an access modifier.
These modifiers should not be used in combination unless you are using access
modifiers protected internal. Consider the code example discussed in the
previous section.
Namespace restriction: These access modifiers should not be used with
namespace.
Default accessibility restriction: When, or if, a member is declared without an
access modifier, then default accessibility is used. All classes are implicitly
internal, and its members are private.
Top-level type restriction: Top-level types are parent types that have immediate
parent type objects. Parent or top-level types cannot use any accessibility other
than internal or public accessibility. If no access modifier is applied, default
accessibility will be internal.
Nested-type restriction: Nested types are those that are members of other types,
or have immediate parent types other than universal types, that is, an object. The
accessibility of these can be declared as discussed in the following table (https:/
/​docs.​microsoft. ​com/ ​en- ​us/ ​dotnet/ ​csharp/ ​language- ​reference/ ​keywords/
accessibility- ​levels):

Nested
Type

Default
Accessibility
for Members

Allowed
Accessibility Can
Be Declared

Description

Enum public None enum has public accessibility, and its
members have only public
accessibility. These are meant to be
used for other types; hence, they are
not allowed to set any accessibility
explicitly.

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/accessibility-levels
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/accessibility-levels
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/accessibility-levels
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/accessibility-levels
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/accessibility-levels
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/accessibility-levels
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/accessibility-levels
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/accessibility-levels
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/accessibility-levels
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/accessibility-levels
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/accessibility-levels
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/accessibility-levels
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/accessibility-levels
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/accessibility-levels
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/accessibility-levels
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/accessibility-levels
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/accessibility-levels
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/accessibility-levels
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/accessibility-levels
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/accessibility-levels
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/accessibility-levels
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/accessibility-levels
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/accessibility-levels
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/accessibility-levels
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/accessibility-levels

Day 04 - Discussing C# Class Members

[123]

Class private public,
internal,
protected,
private,
protected
internal

Class is internal by default, and
members are private. Refer to the
previous section-Rules for access
modifier for more details.

Interface public None Interface is internal by default, and its
members are public. Members of
interface are meant to be utilized from
inherited types, so there is no explicit
accessibility allowed for interface.

struct private public,
internal,
private

The same as class, struct is internal by
default and its members are private.
We can explicitly apply accessibility of
public, internal, and private.

abstract
In simple words, we can say that an abstract modifier indicates that things are yet to be
completed. A class is only meant to be a base class for other classes when an abstract
modifier is used to create a class. Members marked as abstract in this class should be
implemented in the derive class.

The abstract modifier indicates incomplete things and can be used with
class, method, property, indexer, and/or event. Members marked as
abstract would not be allowed to define accessibility other than public,
protected, internal and protected internal.

Abstract classes are half-defined. This means these provide a way to override members to
child classes. We should use base classes in the project where we need to have the same
member for all child classes with its own implementations or need to override. For example,
let's consider an abstract class car with an abstract method color and have child classes
Honda car, Ford car, Maruti car, and so on. In this case, all child classes would have color
member but with different implementations because the color method would be overridden
in the child classes with their own implementations. The point to be noted here is that
abstract classes represent is-a relation.

Day 04 - Discussing C# Class Members

[124]

To understand the capacity of this modifier, let's consider the following example:

namespace Day04
{
 internal abstract class StringCalculator
 {
 public abstract string Num1 { get; set; }
 protected abstract string Num2 { get; set; }
 internal abstract string Num3 { get; set; }
 protected internal abstract string Num4 { get;
 set; }

 public int Sum() => Convert.ToInt32(Num1) +
Convert.ToInt32(Num2);
 }
}

The preceding code snippet is an abstract class that contains abstract properties and a non-
abstract method. Other classes can only implement this class. Please refer to the following
code snippet:

internal class StringCalculatorImplement : StringCalculator
{
 public override string Num1 { get; set; }
 protected override string Num2 { get; set; }
 internal override string Num3 { get; set; }
 protected internal override string Num4 { get; set; }

 //other stuffs here
}

In the preceding code snippet, StringCalculatorImplement is implementing the abstract
class StringCalculator, and all members are marked as abstract.

Day 04 - Discussing C# Class Members

[125]

Rules of the abstract modifier
There are certain rules we need to follow while working with abstract modifiers, and these
rules are discussed as follows:

Instantiation: If a class is marked as abstract, we cannot create the instance of it.
In other words, object initialization is not allowed for abstract classes. We will get
a compile-time error if we try to do this explicitly. Refer to the following
screenshot, where we are trying to instantiate an abstract class:

Non-abstract: A class may or may not contain abstract methods or members that
are marked as abstract. This means there is no restriction when we have to create
all abstract members and methods for abstract classes. The following code obeys
this rule:

internal abstract class StringCalculator
{
 public abstract string Num1 { get; set; }
 public abstract string Num2 { get; set; }
 public abstract int SumToBeImplement();

 //non-abstract
 public int Sum() => Convert.ToInt32(Num1) + Convert.ToInt32(Num2);
}

internal class StringCalculatorImplement : StringCalculator
{

Day 04 - Discussing C# Class Members

[126]

 public override string Num1 { get; set; }
 public override string Num2 { get; set; }
 public override int SumToBeImplement() => Convert.ToInt32(Num1) +
Convert.ToInt32(Num2);
}

Limit-inherit nature: As we discussed, an abstract class is meant to be inherited
by other classes. If we do not want to inherit the abstract class from other classes,
we should use a sealed modifier. We will discuss this in detail in the upcoming
sections.

For more information, refer to
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide
/classes-and-structs/abstract-and-sealed-classes-and-class-
members.

Implementation nature: All members of an abstract class should be implemented
in the child class that is inheriting the abstract class only if the child class is non-
abstract. To understand this, let's consider the following examples:

internal abstract class StringCalculator
{
 public abstract string Num1 { get; set; }
 public abstract string Num2 { get; set; }
 public abstract int SumToBeImplement();

 //non-abstract
 public int Sum() => Convert.ToInt32(Num1) + Convert.ToInt32(Num2);
}
internal abstract class AnotherAbstractStringCalculator: StringCalculator
{
 //no need to implement members of StringCalculator class
}

The preceding code snippet is showing two abstract classes. A child abstract class,
AnotherAbstractString, is inheriting another abstract class, StringCalculator. As
both the classes are abstract, there's no need to implement members of the inherited abstract
class that is StringCalculator.

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/abstract-and-sealed-classes-and-class-members
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/abstract-and-sealed-classes-and-class-members
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/abstract-and-sealed-classes-and-class-members
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/abstract-and-sealed-classes-and-class-members

Day 04 - Discussing C# Class Members

[127]

Now, consider another example where the inherited class is non-abstract. In this case, the
child class should implement all the abstract members of the abstract class; otherwise, it will
throw a compile-time error. See the following screenshot:

Virtual in nature: Methods and properties marked as abstract for the abstract
class are virtual, by default, in nature. These methods and properties will be
overridden in inherited classes.

Here is the complete example of abstract class implementation:

internal abstract class StringCalculator
{
 public string Num1 { get; set; }
 public string Num2 { get; set; }
 public abstract int Sum();

}

internal class StringCalculatorImplement : StringCalculator
{
 public override int Sum() => Convert.ToInt32(Num1) +
Convert.ToInt32(Num2);
}

Day 04 - Discussing C# Class Members

[128]

async
The async modifier provides a way to make a method of the anonymous type or a lambda
expression as asynchronous. When it is used with a method, that method is called as the
async method.

async will be discussed in details on day six.

Consider the following code example:

internal class StringCalculator
{
 public string Num1 { get; set; }
 public string Num2 { get; set; }
 public async Task<int> Sum() => await
Task.Run(()=>Convert.ToInt32(Num1) +
 Convert.ToInt32(Num2));
}

The preceding code will provide the same result as discussed in the code examples in the
previous sections; the only difference is this method call is asynchronous.

const
The const modifier gives the ability to define a constant field or constant local. When we
defined fields or variables using const, these fields are not called variables anymore
because const is not meant for change, while variables are. Constant fields are class-level
constants that are accessible within or outside the class (depends upon their modifier),
while constant locals are defined within a method.

Fields and variables defined as const are not variables and may not be
modified. These constants can be any of these: numbers, bool, string, or
null references. A static modifier is not allowed while declaring constants.

Day 04 - Discussing C# Class Members

[129]

Here is the code snippet that shows the valid constant declaration:

internal class StringCalculator
{
 private const int Num1 = 70;
 public const double Pi = 3.14;
 public const string Book = "Learn C# in 7-days";

 public int Sum()
 {
 const int num2 = Num1 + 85;
 return Convert.ToInt32(Num1) + Convert.ToInt32(num2);
 }
}

event
The modifier event helps declare an event for the publisher class. We will discuss this in
detail on day five. For more information on this modifier, refer to https:/ ​/ ​docs.
microsoft.​com/​en- ​us/ ​dotnet/ ​csharp/ ​language- ​reference/ ​keywords/ ​event. ​

extern
The modifier extern helps declare a method that uses an external library or dll. This is
important when you want to use an external unmanaged library.

A method that is implementing external unmanaged libraries using the extern keyword
must be declared as static. For more information, refer to https:/ ​/​docs. ​microsoft. ​com/
en-​us/​dotnet/​csharp/ ​language- ​reference/ ​keywords/ ​extern. ​

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/event
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/event
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/event
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/event
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/event
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/event
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/event
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/event
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/event
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/event
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/event
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/event
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/event
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/event
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/event
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/event
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/event
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/event
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/event
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/event
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/event
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/event
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/event
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/event
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/event
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/extern
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/extern
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/extern
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/extern
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/extern
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/extern
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/extern
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/extern
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/extern
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/extern
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/extern
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/extern
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/extern
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/extern
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/extern
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/extern
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/extern
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/extern
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/extern
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/extern
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/extern
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/extern
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/extern
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/extern
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/extern

Day 04 - Discussing C# Class Members

[130]

new
The new operator can be a modifier, an operator, or modifier. Let's discuss this in detail:

Operator: new as an operator helps us create an object instance of a class and
invokes their constructors. For example, the following line is showing the use of
new as an operator:

StringCalculator calculator = new StringCalculator();

Modifier: The new modifier helps hide members inherited from a base class:

internal class StringCalculator
{
 private const int Num1 = 70;
 private const int Num2 = 89;

 public int Sum() => Num1 + Num2;
}

internal class StingCalculatorImplement : StringCalculator
{
 public int Num1 { get; set; }
 public int Num2 { get; set; }

 public new int Sum() => Num1 + Num2;
}

This is also known as hiding in C#.

Constraint: The new operator as a constraint makes sure that in declaration of
every generic class, it must have a public parameter-less constructor. This will be
discussed in detail on day five.

Day 04 - Discussing C# Class Members

[131]

override
The override modifier helps extend the abstract or virtual implementation of inherited
members (that is, method, property, indexer, or event). This will be discussed in detail on
day seven.

partial
With the help of the partial modifier, we can split a class, an interface, or a struct into
multiple files. Look at the following code example:

namespace Day04
{
 public partial class Calculator
 {
 public int Add(int num1, int num2) => num1 + num2;
 }
}
namespace Day04
{
 public partial class Calculator
 {
 public int Sub(int num1, int num2) => num1 - num2;
 }
}

Here, we have two files, Calculator.cs and Calculator1.cs. Both files have
Calculator as their partial class.

readonly
The readonly modifier helps us create a field declaration as readonly. A readonly field
can only be assigned a value at the time of declaration or as part of the declaration itself. To
understand this better, consider the following code snippet:

internal class StringCalculator
{
 private readonly int _num2;
 public readonly int Num1 = 179;

 public StringCalculator(int num2)
 {

Day 04 - Discussing C# Class Members

[132]

 _num2 = num2;
 }

 public int Sum() => Num1 + _num2;
}

In the preceding code snippet, we have two fields, Num1 and _num2 are readonly .Here is
the code snippet that tells us how to use these fields:

namespace Day04
{
 internal class Program
 {
 private static void Main(string[] args)
 {
 WriteLine("Example of readOnly modifier");
 Write("Enter number of your choice:");
 var num = ReadLine();
 StringCalculator calculator =
 newStringCalculator(Convert.ToInt32(num));
 Write($"Sum of {calculator.Num1} and {num} is
 {calculator.Sum()}");
 ReadLine();
 }
 }
}

In the preceding code-snippet, the field _num2 is initialized from the constructor and Num1
is initialized at the time of its declaration. When you run the preceding code, it generates
output as shown in following screenshot:

It will throw a compile-time error if we explicitly try to assign a value to the Num1
readonly field. See the following screenshot:

Day 04 - Discussing C# Class Members

[133]

In the code snippet shown in the preceding screenshot, we are trying to assign the value
Num1 to the readonly field. This is not allowed, so it throws an error.

sealed
The modifier sealed is something that, when applied with a class, says, "I am not going
to be available for any kind of inheritance further. Do not inherit me now." In simple words,
this modifier restricts classes from being inherited by other classes.

The modifier sealed is used with override when applying abstract
methods (which are virtual in default by nature) to derived or inherited
class.

To understand this better, let's consider the following code example:

internal abstract class StringCalculator
{
 public int Num1 { get; set; }
 public int Num2 { get; set; }

 public abstract int Sum();
 public virtual int Sub() => Num1 -Num2;
}
internal class Calc : StringCalculator
{
 public int Num3 { get; set; }
 public int Num4 { get; set; }
 public override int Sub() => Num3 - Num4;
 //This will not be inherited from within derive classes

Day 04 - Discussing C# Class Members

[134]

 //any more
 public sealed override int Sum() => Num3 + Num4;
}

The preceding code snippet is defining abstract class and its abstract method and a virtual
method. Now, both abstract method and virtual method can be overridden in derived
classes. So, in class calc, both the methods Sum() and Sub() are overridden. From here,
method Sub() is available for further overriding, but Sum() is a sealed method, so we can't
override this method anymore in derived classes. If we explicitly try to do this, it throws a
compile-time error as shown in the following screenshot:

You cannot apply a sealed modifier on an abstract classes. If we explicitly try this, it
eventually throws a compile-time error. See the following screenshot:

Day 04 - Discussing C# Class Members

[135]

static
The modifier static helps us declare static members. These members are actually also
known as class-level members and not object-level members. This means there is no need to
create an instance of object to use these members.

Rules for the static modifier
There are certain rules that need to be followed while working with the static modifier:

Restriction: You can use the static modifier with only class, field, method,
property, operator, event, and constructors. This modifier cannot be used with
indexer and types other than class.
Nature by static: When we declare a constant, it is implicitly static by nature.
Consider the following code snippet:

internal class StringCalculator
{
 public const int Num1 = 10;
 public const int Num2 = 20;
}

Day 04 - Discussing C# Class Members

[136]

The preceding StringCalculator class is has two constants, Num1 and Num2. These are
accessible by class, and there is no need to create an instance of class. See the following
code snippet:

internal class Program
{
 private static void Main(string[] args)
 {
 WriteLine("Example of static modifier");
 Write($"Sum of {StringCalculator.Num1} and
 {StringCalculator.Num2} is{StringCalculator.Num1 +
 StringCalculator.Num2}");
 ReadLine();
 }
}

Complete static: If class is defined with the use of the static modifier, then all
the members of this static class should be static. There will be a compile-time
error if a static class is explicitly defined to create non-static members.
Consider the following screenshot:

Availability: No need to create an instance of class to access the static member.
The keyword this cannot be applied on static methods or properties. We have
already discussed this, and base keywords, on day two.

Day 04 - Discussing C# Class Members

[137]

unsafe
This modifier helps use unsafe code blocks. We will discuss this in detail on day six.

virtual
This modifier helps us define virtual methods that are meant to be overridden in inherited
classes. See the following code:

internal class StringCalculator
{
 private const int Num1 = 70;
 private const int Num2 = 89;

 public virtual int Sum() => Num1 + Num2;
}

internal class StingCalculatorImplement : StringCalculator
{
 public int Num1 { get; set; }
 public int Num2 { get; set; }

 public override int Sum() => Num1 + Num2;
}

For more information, refer to https:/ ​/​docs. ​microsoft. ​com/ ​en-​us/
dotnet/ ​csharp/ ​language- ​reference/ ​keywords/ ​virtual. ​

Methods
A block of statements that have the access modifier, name, return type, and parameters
(which may or may not be there) are nothing but a method. A method is meant to perform
some tasks.

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/virtual
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/virtual
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/virtual
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/virtual
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/virtual
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/virtual
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/virtual
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/virtual
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/virtual
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/virtual
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/virtual
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/virtual
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/virtual
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/virtual
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/virtual
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/virtual
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/virtual
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/virtual
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/virtual
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/virtual
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/virtual
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/virtual
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/virtual
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/virtual
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/virtual

Day 04 - Discussing C# Class Members

[138]

Methods are meant to call either by another method or by another
program.

How to use a method?
As said earlier, methods are meant to perform some actions. So, any method or program
that needs to utilize these actions could call/consume/use the defined method.

A method has various element discussed as follows:

Access modifier: A method should have an access modifier (refer to the previous
section for more details on modifier). The modifier helps us define the scope of
method or the availability of the method, for example. A method defined using
the private modifier can only be visible to its own class.
Return type: After performing an action, a method may or may not return
something. Method return type is based on the data types (refer to day two for
information on datatypes). For example, if method is returning a number, its data
type would be an int and its return type is void if the method does not return
anything.
Name: A name is unique within the class. Names are case sensitive. In the class
StringCalculator, we cannot define two methods with the name Sum().
Parameter(s): These are optional for any method. This means a method may or
may not have a parameter. Parameters are defined based on the datatype.
Functioning body: A part of instructions to be executed by a method is nothing
but a functionality of the method.

Day 04 - Discussing C# Class Members

[139]

The following screenshot shows a typical method:

Before moving ahead, let's recall the requirements we discussed at the start of day four,
where we created a method to calculate the sum of a string parameter list. Here is the
program that meets these requirements:

namespace Day04
{
 class StringCalculatorUpdated
 {
 public int Add(string numbers)
 {
 int result=0;
 if (string.IsNullOrEmpty(numbers))
 return result;
 foreach (var n in numbers.Split(','))
 {
 result +=
 Convert.ToInt32(string.IsNullOrEmpty(n) ? "0" : n);
 }
 return result;
 }
 }
}
namespace Day04
{
 internal class Program
 {
 private static void Main(string[] args)
 {
 WriteLine("Example of method");

Day 04 - Discussing C# Class Members

[140]

 StringCalculatorUpdated calculator = new
 StringCalculatorUpdated();
 Write("Enter numbers comma separated:");
 var num = ReadLine();
 Write($"Sum of {num} is
 {calculator.Add(num)}");
 ReadLine();
 }
 }
}

The preceding code produces output as expected. Refer to the following screenshot:

The preceding code is working absolutely fine but needs refactoring, so lets split our code
into small methods:

namespace Day04
{
 internal class StringCalculatorUpdated
 {
 public int Add(string numbers) =>
 IsNullOrEmpty(numbers) ? 0 :
 AddStringNumbers(numbers);

 private bool IsNullOrEmpty(string numbers) =>
 string.IsNullOrEmpty(numbers);

 private int AddStringNumbers(string numbers) =>
 GetSplittedStrings(numbers).Sum(StringToInt32);

 private IEnumerable<string>
 GetSplittedStrings(string numbers) =>
 numbers.Split(',');
 private int StringToInt32(string n) =>
 Convert.ToInt32(string.IsNullOrEmpty(n) ? "0" : n);
 }
}

Day 04 - Discussing C# Class Members

[141]

Code refactoring is beyond the scope of this book. For more details on
code refactoring, refer to https:/ ​/​www. ​packtpub. ​com/ ​application-
development/ ​refactoring- ​microsoft- ​visual- ​studio- ​2010. ​

Now, our code looks better and readable. This will produce the same output.

Properties
Properties are members of a class, structure, or interface generally called as a named
member. The intended behaviors of properties are similar to fields with the difference being
that the implementation of properties is possible with the use of accessors.

Properties are extensions to fields. The accessors get and set helps retrieve
and assign value to property.

Here is the typical property (also called property with auto-property syntax) of a class:

public int Number { get; set; }

For auto property, compiler generates the backup field, which is nothing but a storage field.
So, the preceding property would be shown as follows, with a backup field:

private int _number;

public int Number
{
 get { return _number; }
 set { _number = value; }
}

The preceding property with an expression body looks like this:

private int _number;
public int Number
{
 get => _number;
 set => _number = value;
}

https://www.packtpub.com/application-development/refactoring-microsoft-visual-studio-2010
https://www.packtpub.com/application-development/refactoring-microsoft-visual-studio-2010
https://www.packtpub.com/application-development/refactoring-microsoft-visual-studio-2010
https://www.packtpub.com/application-development/refactoring-microsoft-visual-studio-2010
https://www.packtpub.com/application-development/refactoring-microsoft-visual-studio-2010
https://www.packtpub.com/application-development/refactoring-microsoft-visual-studio-2010
https://www.packtpub.com/application-development/refactoring-microsoft-visual-studio-2010
https://www.packtpub.com/application-development/refactoring-microsoft-visual-studio-2010
https://www.packtpub.com/application-development/refactoring-microsoft-visual-studio-2010
https://www.packtpub.com/application-development/refactoring-microsoft-visual-studio-2010
https://www.packtpub.com/application-development/refactoring-microsoft-visual-studio-2010
https://www.packtpub.com/application-development/refactoring-microsoft-visual-studio-2010
https://www.packtpub.com/application-development/refactoring-microsoft-visual-studio-2010
https://www.packtpub.com/application-development/refactoring-microsoft-visual-studio-2010
https://www.packtpub.com/application-development/refactoring-microsoft-visual-studio-2010
https://www.packtpub.com/application-development/refactoring-microsoft-visual-studio-2010
https://www.packtpub.com/application-development/refactoring-microsoft-visual-studio-2010
https://www.packtpub.com/application-development/refactoring-microsoft-visual-studio-2010
https://www.packtpub.com/application-development/refactoring-microsoft-visual-studio-2010
https://www.packtpub.com/application-development/refactoring-microsoft-visual-studio-2010
https://www.packtpub.com/application-development/refactoring-microsoft-visual-studio-2010
https://www.packtpub.com/application-development/refactoring-microsoft-visual-studio-2010
https://www.packtpub.com/application-development/refactoring-microsoft-visual-studio-2010

Day 04 - Discussing C# Class Members

[142]

For more details on the expression bodies property, refer to https:/ ​/
visualstudiomagazine. ​com/​articles/ ​2015/ ​06/ ​03/​c- ​sharp- ​6-
expression- ​bodied- ​properties- ​dictionary- ​initializer. ​aspx. ​

Types of properties
There are multiple flavors of properties we can declare or play. We just discussed auto
properties and discussed how compiler converts it with a backup storage field. In this
section, we will discuss the other types of properties available.

Read-write property
A property that allows us to store and retrieve values is nothing but a read-write property.
A typical read-write property with backing storage field would have both set and get
accessors. The set accessor stores the data of the data type of the property. Note that for the
set accessor, there's always a single parameter, that is, value, and this matches the storage
data or data type of the property.

Auto properties are automatically converted to property with backing
storage fields by the compiler.

See the following code snippet to understand this in detail:

internal class ProeprtyExample
{
 private int _num1;
 //with backing field
 public int Num1
 {
 get => _num1;
 set => _num1 = value;
 }
 //auto property
 public int Num2 { get; set; }
}

https://visualstudiomagazine.com/articles/2015/06/03/c-sharp-6-expression-bodied-properties-dictionary-initializer.aspx
https://visualstudiomagazine.com/articles/2015/06/03/c-sharp-6-expression-bodied-properties-dictionary-initializer.aspx
https://visualstudiomagazine.com/articles/2015/06/03/c-sharp-6-expression-bodied-properties-dictionary-initializer.aspx
https://visualstudiomagazine.com/articles/2015/06/03/c-sharp-6-expression-bodied-properties-dictionary-initializer.aspx
https://visualstudiomagazine.com/articles/2015/06/03/c-sharp-6-expression-bodied-properties-dictionary-initializer.aspx
https://visualstudiomagazine.com/articles/2015/06/03/c-sharp-6-expression-bodied-properties-dictionary-initializer.aspx
https://visualstudiomagazine.com/articles/2015/06/03/c-sharp-6-expression-bodied-properties-dictionary-initializer.aspx
https://visualstudiomagazine.com/articles/2015/06/03/c-sharp-6-expression-bodied-properties-dictionary-initializer.aspx
https://visualstudiomagazine.com/articles/2015/06/03/c-sharp-6-expression-bodied-properties-dictionary-initializer.aspx
https://visualstudiomagazine.com/articles/2015/06/03/c-sharp-6-expression-bodied-properties-dictionary-initializer.aspx
https://visualstudiomagazine.com/articles/2015/06/03/c-sharp-6-expression-bodied-properties-dictionary-initializer.aspx
https://visualstudiomagazine.com/articles/2015/06/03/c-sharp-6-expression-bodied-properties-dictionary-initializer.aspx
https://visualstudiomagazine.com/articles/2015/06/03/c-sharp-6-expression-bodied-properties-dictionary-initializer.aspx
https://visualstudiomagazine.com/articles/2015/06/03/c-sharp-6-expression-bodied-properties-dictionary-initializer.aspx
https://visualstudiomagazine.com/articles/2015/06/03/c-sharp-6-expression-bodied-properties-dictionary-initializer.aspx
https://visualstudiomagazine.com/articles/2015/06/03/c-sharp-6-expression-bodied-properties-dictionary-initializer.aspx
https://visualstudiomagazine.com/articles/2015/06/03/c-sharp-6-expression-bodied-properties-dictionary-initializer.aspx
https://visualstudiomagazine.com/articles/2015/06/03/c-sharp-6-expression-bodied-properties-dictionary-initializer.aspx
https://visualstudiomagazine.com/articles/2015/06/03/c-sharp-6-expression-bodied-properties-dictionary-initializer.aspx
https://visualstudiomagazine.com/articles/2015/06/03/c-sharp-6-expression-bodied-properties-dictionary-initializer.aspx
https://visualstudiomagazine.com/articles/2015/06/03/c-sharp-6-expression-bodied-properties-dictionary-initializer.aspx
https://visualstudiomagazine.com/articles/2015/06/03/c-sharp-6-expression-bodied-properties-dictionary-initializer.aspx
https://visualstudiomagazine.com/articles/2015/06/03/c-sharp-6-expression-bodied-properties-dictionary-initializer.aspx
https://visualstudiomagazine.com/articles/2015/06/03/c-sharp-6-expression-bodied-properties-dictionary-initializer.aspx
https://visualstudiomagazine.com/articles/2015/06/03/c-sharp-6-expression-bodied-properties-dictionary-initializer.aspx
https://visualstudiomagazine.com/articles/2015/06/03/c-sharp-6-expression-bodied-properties-dictionary-initializer.aspx
https://visualstudiomagazine.com/articles/2015/06/03/c-sharp-6-expression-bodied-properties-dictionary-initializer.aspx
https://visualstudiomagazine.com/articles/2015/06/03/c-sharp-6-expression-bodied-properties-dictionary-initializer.aspx
https://visualstudiomagazine.com/articles/2015/06/03/c-sharp-6-expression-bodied-properties-dictionary-initializer.aspx
https://visualstudiomagazine.com/articles/2015/06/03/c-sharp-6-expression-bodied-properties-dictionary-initializer.aspx
https://visualstudiomagazine.com/articles/2015/06/03/c-sharp-6-expression-bodied-properties-dictionary-initializer.aspx
https://visualstudiomagazine.com/articles/2015/06/03/c-sharp-6-expression-bodied-properties-dictionary-initializer.aspx

Day 04 - Discussing C# Class Members

[143]

Previously, we had two properties: one defined using the backing field and another by auto
property. The accessor set is responsible for storing the data using the parameter value,
and it matches the data type int, and get is responsible for retrieving the data of data type
int.

Read-only property
A property defined with only the get accessor or with a private set accessor is called a
read-only property.

There is slight difference between read-only and const. Refer to https:/ ​/
stackoverflow. ​com/ ​questions/ ​55984/ ​what- ​is- ​the- ​difference-
between- ​const- ​and- ​readonly for more details.

As the name indicates, read-only properties only retrieve values. You cannot store the data
in a read-only property. See the following code snippet for more details:

internal class PropertyExample
{
 public PropertyExample(int num1)
 {
 Num1 = num1;
 }
 //constructor restricted property
 public int Num1 { get; }
 //read-only auto proeprty
 public int Num2 { get; private set; }
 //read-only collection initialized property
 public IEnumerable<string> Numbers { get; } = new List<string>();
}

In the preceding code, we have three properties; all are read-only. Num1 is a read-only
property, and this is restricted by a constructor. This means you can set a property in a
constructor only. Num2 is a pure read-only property; this means it is meant to retrieve the
data. Numbers is the auto-initializer read-only property; it has a default initialization for a
property of collection.

https://stackoverflow.com/questions/55984/what-is-the-difference-between-const-and-readonly
https://stackoverflow.com/questions/55984/what-is-the-difference-between-const-and-readonly
https://stackoverflow.com/questions/55984/what-is-the-difference-between-const-and-readonly
https://stackoverflow.com/questions/55984/what-is-the-difference-between-const-and-readonly
https://stackoverflow.com/questions/55984/what-is-the-difference-between-const-and-readonly
https://stackoverflow.com/questions/55984/what-is-the-difference-between-const-and-readonly
https://stackoverflow.com/questions/55984/what-is-the-difference-between-const-and-readonly
https://stackoverflow.com/questions/55984/what-is-the-difference-between-const-and-readonly
https://stackoverflow.com/questions/55984/what-is-the-difference-between-const-and-readonly
https://stackoverflow.com/questions/55984/what-is-the-difference-between-const-and-readonly
https://stackoverflow.com/questions/55984/what-is-the-difference-between-const-and-readonly
https://stackoverflow.com/questions/55984/what-is-the-difference-between-const-and-readonly
https://stackoverflow.com/questions/55984/what-is-the-difference-between-const-and-readonly
https://stackoverflow.com/questions/55984/what-is-the-difference-between-const-and-readonly
https://stackoverflow.com/questions/55984/what-is-the-difference-between-const-and-readonly
https://stackoverflow.com/questions/55984/what-is-the-difference-between-const-and-readonly
https://stackoverflow.com/questions/55984/what-is-the-difference-between-const-and-readonly
https://stackoverflow.com/questions/55984/what-is-the-difference-between-const-and-readonly
https://stackoverflow.com/questions/55984/what-is-the-difference-between-const-and-readonly
https://stackoverflow.com/questions/55984/what-is-the-difference-between-const-and-readonly
https://stackoverflow.com/questions/55984/what-is-the-difference-between-const-and-readonly
https://stackoverflow.com/questions/55984/what-is-the-difference-between-const-and-readonly
https://stackoverflow.com/questions/55984/what-is-the-difference-between-const-and-readonly
https://stackoverflow.com/questions/55984/what-is-the-difference-between-const-and-readonly
https://stackoverflow.com/questions/55984/what-is-the-difference-between-const-and-readonly

Day 04 - Discussing C# Class Members

[144]

Computed property
A property that returns the results of an expression is called a computed property. The
expression may be based on other properties of the same class or based on any valid
expression with CLR-compliant data types (for data types, refer to day two) that should be
the same as the property data type.

Computed properties return the results of an expression and cannot allow
to set data, so these are some kind of read-only property.

To understand this in detail, let's consider the following:

Block-bodied members
In the block-bodied computed property, calculations are returned with the get accessor.
Refer to the following example:

internal class ProeprtyExample
{
 //other stuff removed
 public int Num3 { get; set; }
 public int Num4 { get; set; }
 public int Sum {
 get
 {
 return Num3 + Num4;
 }
 }
}

In the preceding code, we have three properties: Num3, Num4 and Sum. The property Sum is a
computed property that returns an expression result from within the get accessor.

Expression-bodied members
In expression-bodied, the computed property calculations are returned using lambda
expression, which is used by the expression-bodied members. Refer to the following
example:

internal class ProeprtyExample
{
 public int Num3 { get; set; }
 public int Num4 { get; set; }

Day 04 - Discussing C# Class Members

[145]

 public int Add => Num3 + Num4;
}

In the preceding code, our Add property is returning an expression of Sum for two other
properties.

Property using validation
There may be scenarios when we want to validate certain data for properties. Then, we
would use a few validations along with properties. These are not a special type of property,
but complete properties with validation.

Data annotation is a way to validate various properties and add custom validations. For
more information, refer to https:/ ​/ ​www. ​codeproject. ​com/​Articles/ ​826304/ ​Basic-
Introduction-​to- ​Data- ​Annotation- ​in- ​NET- ​Frame. ​

These properties are important in a scenario when we need to validate the input using
properties. Consider the following code snippet:

internal class ProeprtyExample
{
 private int _number;
 public int Number
 {
 get => _number;
 set
 {
 if (value < 0)
 {
 //log for records or take action
 //Log("Number is negative.");
 throw new ArgumentException("Number can't be -ve.");
 }
 _number = value;
 }
 }
}

In the preceding code, there is no need to apply any explicit validation on the client code for
the preceding property. The property Number is self-validated whenever it is being called to
store data. In the previous code, whenever the client code tries to enter any negative
number, it implicitly throws out an exception that the number can't be negative. In this case,
only positive numbers are entered by the client code. On the same node, you can apply as
much as validation as you want.

https://www.codeproject.com/Articles/826304/Basic-Introduction-to-Data-Annotation-in-NET-Frame
https://www.codeproject.com/Articles/826304/Basic-Introduction-to-Data-Annotation-in-NET-Frame
https://www.codeproject.com/Articles/826304/Basic-Introduction-to-Data-Annotation-in-NET-Frame
https://www.codeproject.com/Articles/826304/Basic-Introduction-to-Data-Annotation-in-NET-Frame
https://www.codeproject.com/Articles/826304/Basic-Introduction-to-Data-Annotation-in-NET-Frame
https://www.codeproject.com/Articles/826304/Basic-Introduction-to-Data-Annotation-in-NET-Frame
https://www.codeproject.com/Articles/826304/Basic-Introduction-to-Data-Annotation-in-NET-Frame
https://www.codeproject.com/Articles/826304/Basic-Introduction-to-Data-Annotation-in-NET-Frame
https://www.codeproject.com/Articles/826304/Basic-Introduction-to-Data-Annotation-in-NET-Frame
https://www.codeproject.com/Articles/826304/Basic-Introduction-to-Data-Annotation-in-NET-Frame
https://www.codeproject.com/Articles/826304/Basic-Introduction-to-Data-Annotation-in-NET-Frame
https://www.codeproject.com/Articles/826304/Basic-Introduction-to-Data-Annotation-in-NET-Frame
https://www.codeproject.com/Articles/826304/Basic-Introduction-to-Data-Annotation-in-NET-Frame
https://www.codeproject.com/Articles/826304/Basic-Introduction-to-Data-Annotation-in-NET-Frame
https://www.codeproject.com/Articles/826304/Basic-Introduction-to-Data-Annotation-in-NET-Frame
https://www.codeproject.com/Articles/826304/Basic-Introduction-to-Data-Annotation-in-NET-Frame
https://www.codeproject.com/Articles/826304/Basic-Introduction-to-Data-Annotation-in-NET-Frame
https://www.codeproject.com/Articles/826304/Basic-Introduction-to-Data-Annotation-in-NET-Frame
https://www.codeproject.com/Articles/826304/Basic-Introduction-to-Data-Annotation-in-NET-Frame
https://www.codeproject.com/Articles/826304/Basic-Introduction-to-Data-Annotation-in-NET-Frame
https://www.codeproject.com/Articles/826304/Basic-Introduction-to-Data-Annotation-in-NET-Frame
https://www.codeproject.com/Articles/826304/Basic-Introduction-to-Data-Annotation-in-NET-Frame
https://www.codeproject.com/Articles/826304/Basic-Introduction-to-Data-Annotation-in-NET-Frame
https://www.codeproject.com/Articles/826304/Basic-Introduction-to-Data-Annotation-in-NET-Frame
https://www.codeproject.com/Articles/826304/Basic-Introduction-to-Data-Annotation-in-NET-Frame
https://www.codeproject.com/Articles/826304/Basic-Introduction-to-Data-Annotation-in-NET-Frame
https://www.codeproject.com/Articles/826304/Basic-Introduction-to-Data-Annotation-in-NET-Frame
https://www.codeproject.com/Articles/826304/Basic-Introduction-to-Data-Annotation-in-NET-Frame
https://www.codeproject.com/Articles/826304/Basic-Introduction-to-Data-Annotation-in-NET-Frame

Day 04 - Discussing C# Class Members

[146]

Indexers
An indexer provides a way to access an object via an index like array. For instance, if we
define an indexer for a class, that class works similarly to an array. This means the
collection of this class can be accessed by index.

Keyword this is used to define an indexer. The main benefit of indexer is
that we can set or retrieve the indexed value without explicitly specifying
a type.

Consider the following code snippet:

public class PersonCollection
{
 private readonly string[] _persons = Persons();
 public bool this[string name] => IsValidPerson(name);
 private bool IsValidPerson(string name) =>
 _persons.Any(person => person == name);

 private static string[] Persons() => new[]
 {"Shivprasad","Denim","Vikas","Merint","Gaurav"};
}

The preceding code is a simpler one to represent the power of an indexer. We have a
PersonCollection class having an indexer that makes this class accessible via indexer.
Please refer to the following code:

private static void IndexerExample()
{
 WriteLine("Indexer example.");
 Write("Enter person name to search from collection:");
 var name = ReadLine();
 var person = new PersonCollection();
 var result = person[name] ? "exists." : "does not
 exist.";
 WriteLine($"Person name {name} {result}");
}

Day 04 - Discussing C# Class Members

[147]

We can see the following output after executing the preceding code:

For more information on indexers, refer to https:/ ​/​docs. ​microsoft. ​com/ ​en- ​us/​dotnet/
csharp/​programming- ​guide/ ​indexers/ ​.​

File I/O
File is nothing but a collection of data that stores physically in a directory of the system. The
data that file contains could be any information. In C#, whenever the file is available
programmatically for information retrieval (read) or updating information (write), that is
nothing but a stream.

Stream is nothing but a sequence of bytes.

In the C# file, I/O is just a way to call input streams or output streams:

Input stream: This is nothing but a read operation. Whenever we
programmatically read the data from the file, it is called an input stream or a read
operation.
Output stream: This is nothing but an update operation. Whenever we
programmatically add data to the file, it is called an output stream or a write
operation.

File I/O is a part of the System.IO namespace that contains various classes. In this section,
we will discuss FileStream that we will use in our code example.

A complete list of System.IO classes is available at https:/ ​/​docs.
microsoft. ​com/ ​en- ​us/ ​dotnet/ ​api/ ​system. ​io? ​view= ​netcore- ​2. ​0.​

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/indexers/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/indexers/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/indexers/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/indexers/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/indexers/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/indexers/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/indexers/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/indexers/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/indexers/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/indexers/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/indexers/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/indexers/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/indexers/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/indexers/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/indexers/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/indexers/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/indexers/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/indexers/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/indexers/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/indexers/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/indexers/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/indexers/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/indexers/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/indexers/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/indexers/
https://docs.microsoft.com/en-us/dotnet/api/system.io?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io?view=netcore-2.0

Day 04 - Discussing C# Class Members

[148]

FileStream
As discussed previously, there are a couple of helpful classes that are available under the
System.IO namespace. FileStream is one of these classes that helps us read/write data
to/from a file. Before going on to discuss this class, let's consider one short example where
we will create a file:

private static void FileInputOutputOperation()
{
 const string textLine = "This file is created during
 practice of C#";
 Write("Enter file name (without extension):");
 var fileName = ReadLine();
 var fileNameWithPath = $"D:/{fileName}.txt";
 using (var fileStream = File.Create(fileNameWithPath))
 {
 var iBytes = new
 UTF8Encoding(true).GetBytes(textLine);
 fileStream.Write(iBytes, 0, iBytes.Length);
 }
 WriteLine("Write operation is completed.");
 ReadLine();
 using (var fileStream =
 File.OpenRead(fileNameWithPath))
 {
 var bytes = new byte[1024];
 var encoding = new UTF8Encoding(true);
 while (fileStream.Read(bytes, 0, bytes.Length) >
 0)
 WriteLine(encoding.GetString(bytes));
 }
}

The preceding code first creates a file with specific text/data and then displays the same.
Here is the output of the preceding code. Refer to the following screenshot:

Day 04 - Discussing C# Class Members

[149]

A complete reference of FileStream is available at
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream
?view=netcore-2.0.

Exception handling
Exception is a kind of error that comes when methods do not work as expected or are not
able to handle the situation as intended. Sometimes, there might be unknown situations
where exceptions occurred; for instance, a method can have a situation divide by zero
problem in division operation the situation was never expected while someone wrote the
method, this is an unpredicted situational error. To handle these kind of situations and
other unknown scenarios that can create such exceptions or error, C# provides a method
that is called exception handling. In this section, we will discuss exceptions and exception
handing using C# in details.

Exceptions can be handled using the try...catch...finally block. Catch
or finally blocks should be there with the try block to handle exceptions.

Consider the following code:

class ExceptionhandlingExample
 {
 public int Div(int dividend,int divisor)
 {
 //thrown an exception if divisor is 0
 return dividend / divisor;
 }
 }

The preceding code will throw an unhandled divide by zero exception if the divisor comes
as zero once called using the following code:

private static void ExceptionExample()
{
 WriteLine("Exaception handling example.");
 ExceptionhandlingExample example = new ExceptionhandlingExample();
 Write("Enter dividen:");
 var dividend = ReadLine();
 Write("Enter divisor:");
 var divisor = ReadLine();
 var quotient = example.Div(Convert.ToInt32(dividend),

https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netcore-2.0

Day 04 - Discussing C# Class Members

[150]

Convert.ToInt32(divisor));
 WriteLine($"Quotient of dividend:{dividend}, divisio:{divisor} is
{quotient}");
}

See the following screenshot for the exception:

To handle situations similar to the previous situation, we can use exception handling. In C#,
exception handling has common components, which are discussed here.

try block
The try block is a code of block that is the source of the exception. A try block can have
multiple catch blocks and/or one final bock. This means a try block should have at least
one catch block or one final block.

catch block
The catch block is a code block where a particular or general exception is being handled.
The catch has a parameter of Exception that tells us what exception has occurred.

Day 04 - Discussing C# Class Members

[151]

finally block
A finally block is one that executes in any case (if supplied) whether an exception is
thrown or not. Generally, a finally block is meant to execute few cleanup tasks after
exception.

The throw keyword helps to throw a system or a custom exception.

Now, let's revisit the preceding code that threw an exception:

class ExceptionhandlingExample
{
 public int Div(int dividend,int divisor)
 {
 int quotient = 0;
 try
 {
 quotient = dividend / divisor;
 }
 catch (Exception exception)
 {
 Console.WriteLine($"Exception occuered
 '{exception.Message}'");
 }
 finally
 {
 Console.WriteLine("Exception occured and cleaned.");
 }
 return quotient;
 }
}

Day 04 - Discussing C# Class Members

[152]

Here, we have modified the code by adding try...catch...finally blocks. Now, whenever
an exception occurs, it first goes to the catch block and then to the finally block. After
putting the finally block, whenever we divide by zero an exception will occur, which will
produce the following result:

Different compiler-generated exceptions in catch block
As we discussed previously, there may be multiple catch blocks within a try block. This
means we can catch multiple exceptions. The different catch block could be written to
handle a specific exception class. For example, an exception class for divide by zero
exception is System.DivideByZeroException. A complete discussion of all these classes
is beyond the scope of this book. For further study on these exception classes, refer to
https:/​/​docs.​microsoft. ​com/ ​en- ​us/ ​dotnet/ ​csharp/ ​programming- ​guide/ ​exceptions/
compiler-​generated- ​exceptions. ​

User-defined exceptions
Custom exceptions created as per requirements are user exceptions, and when we create an
exception class, to handle a specific scenario, it is called a user-defined exception. All
user-defined exception classes are derived from the Exception class.

Let's create a user-defined exception. Recall the StringCalculatorUpdated class
(discussed in the section Methods) that is responsible for calculating the sum of string
numbers. Add one more scenario to the existing requirements, that is, throw the
NumberIsExceded exception if any number is greater than 1,000:

internal class NumberIsExcededException : Exception
{
 public NumberIsExcededException(string message) :
 base(message)
 {
 }
 public NumberIsExcededException(string message,

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/exceptions/compiler-generated-exceptions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/exceptions/compiler-generated-exceptions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/exceptions/compiler-generated-exceptions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/exceptions/compiler-generated-exceptions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/exceptions/compiler-generated-exceptions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/exceptions/compiler-generated-exceptions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/exceptions/compiler-generated-exceptions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/exceptions/compiler-generated-exceptions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/exceptions/compiler-generated-exceptions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/exceptions/compiler-generated-exceptions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/exceptions/compiler-generated-exceptions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/exceptions/compiler-generated-exceptions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/exceptions/compiler-generated-exceptions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/exceptions/compiler-generated-exceptions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/exceptions/compiler-generated-exceptions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/exceptions/compiler-generated-exceptions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/exceptions/compiler-generated-exceptions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/exceptions/compiler-generated-exceptions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/exceptions/compiler-generated-exceptions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/exceptions/compiler-generated-exceptions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/exceptions/compiler-generated-exceptions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/exceptions/compiler-generated-exceptions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/exceptions/compiler-generated-exceptions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/exceptions/compiler-generated-exceptions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/exceptions/compiler-generated-exceptions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/exceptions/compiler-generated-exceptions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/exceptions/compiler-generated-exceptions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/exceptions/compiler-generated-exceptions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/exceptions/compiler-generated-exceptions

Day 04 - Discussing C# Class Members

[153]

 Exception innerException):base(message,innerException)
 {
 }
 protected NumberIsExcededException(SerializationInfo
 serializationInfo, StreamingContext streamingContext)
 : base(serializationInfo, streamingContext) {}
}

The preceding code snippet represents our NumberIsExcededException class. We have
three constructors and all are self-explanatory. The third constructor is for serialization. If
required here, we can do the serialization. So, when the exception goes to client from the
remote server, it should be serialized.

Here is the code snippet that handles our newly created exception:

internal class StringCalculatorUpdated
{
 public int Add(string numbers)
 {
 var result = 0;
 try
 {
 return IsNullOrEmpty(numbers) ? result :
 AddStringNumbers(numbers);
 }
 catch (NumberIsExcededException excededException)
 {
 Console.WriteLine($"Exception
 occurred:'{excededException.Message}'");
 }

 return result;
 }
 //other stuffs omitted

 private int StringToInt32(string n)
 {
 var number =
 Convert.ToInt32(string.IsNullOrEmpty(n) ? "0" : n);
 if(number>1000)
 throw new NumberIsExcededException($"Number
 :{number} excedes the limit of 1000.");
 return number;
 }
}

Day 04 - Discussing C# Class Members

[154]

Now, whenever the number exceeds 1,000, it throws an exception. Let's write a client code
that throws an exception, consider the preceding code is called:

private static void CallStringCalculatorUpdated()
{
 WriteLine("Rules for operation:");
 WriteLine("o This operation should only accept input
 in a string data type\n" +
 "o Add operation can take 0, 1, or 2 comma -
 separated numbers, and will return their sum
 for example \"1\" or \"1, 2\"\n" +
 "o Add operation should accept empty string
 but for an empty string it will return 0.\n"
 +
 "o Throw an exception if number > 1000\n");
 StringCalculatorUpdated calculator = new
 StringCalculatorUpdated();
 Write("Enter numbers comma separated:");
 var num = ReadLine();

 Write($"Sum of {num} is {calculator.Add(num)}");
}

The preceding code will generate the following output:

Discussing a regular expression and its
importance
A regular expression or pattern matching is nothing but a way in which we can check
whether an input string is correct or not. This is possible with the use of the Regex class of
the System.Text.RegularExpressions namespace.

Day 04 - Discussing C# Class Members

[155]

The Importance of a regular expression
Pattern matching is very important while we are working to validate text input. Here,
regular expression plays an important role.

Flexible
Patterns are very flexible and provide us with a way to make our own pattern to validate
the input.

Constructs
There are various constructs that help us define the regular expression. Hence, we need to
make them important in our programming where we need validated input. These
constructs are character classes, character escapes, quantifiers, and so on.

Special characters
There is a huge usage of regular expressions in our day-to-day programmings and that why
regular expressions are important. Here are various scenarios as per their usage, where
special characters of regular expression helps us validate the input when it comes with a
pattern.

The period sign (.)
This is a wildcard character that matches any character besides the newline character.

The word sign (w)
Backslash and a lowercase w is a character class that will match any word character.

The space sign (s)
White space can be matched using s (backslash and s).

The digit sign (d)
The digits zero to nine can be matched using d (backslash and lowercase d).

Day 04 - Discussing C# Class Members

[156]

The hyphen sign (-)
Ranges of characters can be matched using the hyphen (-).

Specifying the number of matches
The minimum number of matches required for a character, group, or character class can be
specified with curly brackets ({n}).

Here is the code snippet showing the previous special characters:

private static void ValidateInputText(string inputText, string regExp,bool
isCllection=false,RegexOptions option=RegexOptions.IgnoreCase)
{
 var regularExp = new Regex(regExp,option);

 if (isCllection)
 {
 var matches = regularExp.Matches(inputText);
 foreach (var match in matches)
 {
 WriteLine($"Text '{inputText}' matches
 '{match}' with pattern'{regExp}'");
 }
 }
 var singleMatch = Regex.Match(inputText, regExp,
 option);
 WriteLine($"Text '{inputText}' matches '{singleMatch}'
 with pattern '{regExp}'");
 ReadLine();

}

The preceding code allows inputText and Regexpression to be performed on it. Here is
the calling code:

private static void RegularExpressionExample()
{
 WriteLine("Regular expression example.\n");
 Write("Enter input text to match:");
 var inpuText = ReadLine();
 if (string.IsNullOrEmpty(inpuText))
 inpuText = @"The quick brown fox jumps over the lazy dog.";
 WriteLine("Following is the match based on different pattern:\n");
 const string theDot = @"\.";

Day 04 - Discussing C# Class Members

[157]

 WriteLine("The Period sign [.]");
 ValidateInputText(inpuText,theDot,true);
 const string theword = @"\w";
 WriteLine("The Word sign [w]");
 ValidateInputText(inpuText, theword, true);
 const string theSpace = @"\s";
 WriteLine("The Space sign [s]");
 ValidateInputText(inpuText, theSpace, true);
 const string theSquareBracket = @"\[The]";
 WriteLine("The Square-Brackets sign [()]");
 ValidateInputText(inpuText, theSquareBracket, true);
 const string theHyphen = @"\[a-z0-9]ww";
 WriteLine("The Hyphen sign [-]");
 ValidateInputText(inpuText, theHyphen, true);
 const string theStar = @"\[a*]";
 WriteLine("The Star sign [*] ");
 ValidateInputText(inpuText, theStar, true);
 const string thePlus = @"\[a+]";
 WriteLine("The Plus sign [+] ");
 ValidateInputText(inpuText, thePlus, true);
}

The preceding code generates the following output:

Day 04 - Discussing C# Class Members

[158]

Regular expression is a broad topic. For more details, refer to https:/ ​/
docs. ​microsoft. ​com/ ​en- ​us/​dotnet/ ​api/ ​system. ​text.
regularexpressions? ​view= ​netcore- ​2.​0. ​

Hands-on exercise
Here are the unsolved questions from what you learned up until day four:

What are access modifiers and their accessibility?1.
Write a program to use protected internal.2.
What are abstract classes? Elaborate with the help of a program.3.
Does an abstract class have a constructor? If yes, the why can't we instantiate4.
abstract class? (Refer to https:/ ​/​stackoverflow. ​com/ ​questions/ ​2700256/ ​why-
cant-​an- ​object- ​of- ​abstract- ​class- ​be-​created)
Explain, with the help of a small program, how we can stop an abstract class from5.
being inherited.
Differentiate the sync and async methods.6.
Differentiate the const and readOnly modifiers with the help of a small7.
program.
Write a program to calculate string numbers in addition to the following rules to8.
our StringCalcuatorUpdated example:

Throw an exception where the number is greater than 1,000.
Ignore negative numbers by replacing them with zero.
If the entered string is not a number, throw an exception.

Write a small program to elaborate on property types.9.
Create a property using validation to meet all rules discussed in question 8.10.
What is an exception?11.

How we can handle exceptions in C#? Elaborate using a small program.12.
Write a user-defined exception if a string contains special characters other than13.
delimiters, as defined in the requirements of our class
StringCalculatorUpdated.

https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions?view=netcore-2.0
https://stackoverflow.com/questions/2700256/why-cant-an-object-of-abstract-class-be-created
https://stackoverflow.com/questions/2700256/why-cant-an-object-of-abstract-class-be-created
https://stackoverflow.com/questions/2700256/why-cant-an-object-of-abstract-class-be-created
https://stackoverflow.com/questions/2700256/why-cant-an-object-of-abstract-class-be-created
https://stackoverflow.com/questions/2700256/why-cant-an-object-of-abstract-class-be-created
https://stackoverflow.com/questions/2700256/why-cant-an-object-of-abstract-class-be-created
https://stackoverflow.com/questions/2700256/why-cant-an-object-of-abstract-class-be-created
https://stackoverflow.com/questions/2700256/why-cant-an-object-of-abstract-class-be-created
https://stackoverflow.com/questions/2700256/why-cant-an-object-of-abstract-class-be-created
https://stackoverflow.com/questions/2700256/why-cant-an-object-of-abstract-class-be-created
https://stackoverflow.com/questions/2700256/why-cant-an-object-of-abstract-class-be-created
https://stackoverflow.com/questions/2700256/why-cant-an-object-of-abstract-class-be-created
https://stackoverflow.com/questions/2700256/why-cant-an-object-of-abstract-class-be-created
https://stackoverflow.com/questions/2700256/why-cant-an-object-of-abstract-class-be-created
https://stackoverflow.com/questions/2700256/why-cant-an-object-of-abstract-class-be-created
https://stackoverflow.com/questions/2700256/why-cant-an-object-of-abstract-class-be-created
https://stackoverflow.com/questions/2700256/why-cant-an-object-of-abstract-class-be-created
https://stackoverflow.com/questions/2700256/why-cant-an-object-of-abstract-class-be-created
https://stackoverflow.com/questions/2700256/why-cant-an-object-of-abstract-class-be-created
https://stackoverflow.com/questions/2700256/why-cant-an-object-of-abstract-class-be-created
https://stackoverflow.com/questions/2700256/why-cant-an-object-of-abstract-class-be-created
https://stackoverflow.com/questions/2700256/why-cant-an-object-of-abstract-class-be-created
https://stackoverflow.com/questions/2700256/why-cant-an-object-of-abstract-class-be-created
https://stackoverflow.com/questions/2700256/why-cant-an-object-of-abstract-class-be-created
https://stackoverflow.com/questions/2700256/why-cant-an-object-of-abstract-class-be-created
https://stackoverflow.com/questions/2700256/why-cant-an-object-of-abstract-class-be-created
https://stackoverflow.com/questions/2700256/why-cant-an-object-of-abstract-class-be-created
https://stackoverflow.com/questions/2700256/why-cant-an-object-of-abstract-class-be-created

Day 04 - Discussing C# Class Members

[159]

Write a program to create a file dynamically with the use of various classes of the14.
System.IO namespace (refer to https:/ ​/​docs. ​microsoft. ​com/ ​en- ​us/​dotnet/
api/​system. ​io. ​filestream? ​view= ​netcore- ​2.​0).
What are indexers? Write a short program to create a collection of paginated list.15.
What are regular expressions and how are they helpful in string manipulation.16.
Elaborate using a small program.

Revisiting Day 04
We are concluding our day four learning. Today, we discussed all available modifiers and
went through the code examples of these modifiers; we also discussed accessor modifiers,
namely public, private, internal, protected, and so on.

Then, we came to methods and properties, where we discussed various scenarios and dealt
with programs. We also discussed the indexer and file I/O, and we concluded our day by
learning regular expressions. We went through the constants and we discussed constant
filed and constant local.

Tomorrow, that is, on day five, we will discuss some advanced concepts covering reflection
and understand how we can create and execute code dynamically.

https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netcore-2.0

5
Day 05 - Overview of Reflection

and Collections
Today is day five of our seven-day learning series. Up till now, we have gone through
various insights into the C# language and have got the idea about how to work with
statements, loops, methods, and so on. Today, we will learn the best way to work
dynamically when we're writing code.

There are lots of ways we can dynamically implement code changes and generate an entire
programming class. Today, we will cover the following topics:

What is reflection?
Overview of delegates and events
Collections and non-generics

What is reflection?
In simple terms, reflection is a way to get inside of a program, gathering the object
information of a program/code and/or invoking these at runtime. So, with the help of
reflection, we can analyze and assess our code by writing code in C#. To understand
reflection in detail, let's take the example of the class OddEven. Here is the partial code of
this class:

public class OddEven
{
 public string PrintOddEven(int startNumber, int
 lastNumber)
 {
 return GetOddEvenWithinRange(startNumber,

Day 05 - Overview of Reflection and Collections

[161]

 lastNumber);
 }
 public string PrintSingleOddEven(int number) =>
CheckSingleNumberOddEvenPrimeResult(number);
 private string CheckSingleNumberOddEvenPrimeResult(int
 number)
 {
 var result = string.Empty;
 result = CheckSingleNumberOddEvenPrimeResult(result,
 number);
 return result;
 }
 //Rest code is omitted
}

After going through the code, we can say this code has a few public methods and private
methods. Public methods utilize private methods for various functional demands and
perform tasks to solve a real-world problems where we need to identify the odd or even
numbers.

When we need to utilize the preceding class, we have to instantiate this class and then call
their methods to get the results. Here is how we can utilize this simple class to get the
results:

class Program
{
 static void Main(string[] args)
 {
 int userInput;
 do
 {
 userInput = DisplayMenu();
 switch (userInput)
 {
 case 1:
 Console.Clear();
 Console.Write("Enter number: ");
 var number = Console.ReadLine();
 var objectOddEven = new OddEven();
 var result =
 objectOddEven.PrintSingleOddEven
 (Convert.ToInt32(number));
 Console.WriteLine
 ($"Number:{number} is {result}");
 PressAnyKey();
 break;
 //Rest code is omitted

Day 05 - Overview of Reflection and Collections

[162]

 } while (userInput != 3);
 }
 //Rest code is ommitted
}

In the preceding code snippet, we are just accepting an input from a user as a single number
and then creating an object of our class, so we can call the method PrintSingleOddEven to
check whether an entered number is odd or even. The following screenshot shows the
output of our implementation:

The previous code shows one of the ways in which we can implement the code. In the same
way, we can implement this using the same solution but by analyzing the code. We have
already stated that reflection is a way to analyse our code. In the upcoming section, we will
implement and discuss the code of a similar implementation, but with the use of reflection.

You need to add the following NuGet package to work with reflection,
using the Package Manager Console: install-Package
System.Reflection.

In the following code snippet, we will implement what we did in our previous code
snippet, but here we will use Reflection to solve the same problem and achieve the same
results:

class Program
{
 private static void Main(string[] args)
 {
 int userInput;
 do
 {
 userInput = DisplayMenu();
 switch (userInput)
 {

Day 05 - Overview of Reflection and Collections

[163]

 //Code omitted
 case 2:
 Console.Clear();
 Console.Write("Enter number: ");
 var num = Console.ReadLine();
 Object objInstance =
 Activator.CreateInstance(typeof(OddEven));
 MethodInfo method =
 typeof(OddEven).GetMethod
 ("PrintSingleOddEven");
 object res = method.Invoke
 (objInstance, new object[]
 { Convert.ToInt32(num) });
 Console.WriteLine($"Number:{num} is {res}");
 PressAnyKey();
 break;
 }
 } while (userInput != 3);
 }
 //code omitted
}

The preceding code snippet is simple to define: here, we are getting MethodInfo with the
use of System.Reflection and thereafter invoking the method by passing the required
parameters. The preceding example is the simplest one to showcase the power of
Reflection; we can do more things with the use of Reflection.

In the preceding code, instead of Activator.CreateInstance(typeof(OddEven)), we
can also use Assembly.CreateInstance("OddEven"). Assembly.CreateInstance
looks into the type of the assembly and creates the instance using
Activator.CreateInstance. For more information on Assembly,CreateInstance,
refer to: https:/​/ ​docs. ​microsoft. ​com/ ​en- ​us/​dotnet/ ​api/ ​system. ​reflection. ​assembly.
createinstance?​view= ​netstandard- ​2. ​0#System_ ​Reflection_ ​Assembly_ ​CreateInstance_
System_​String_​.

https://docs.microsoft.com/en-us/dotnet/api/system.reflection.assembly.createinstance?view=netstandard-2.0#System_Reflection_Assembly_CreateInstance_System_String_
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.assembly.createinstance?view=netstandard-2.0#System_Reflection_Assembly_CreateInstance_System_String_
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.assembly.createinstance?view=netstandard-2.0#System_Reflection_Assembly_CreateInstance_System_String_
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.assembly.createinstance?view=netstandard-2.0#System_Reflection_Assembly_CreateInstance_System_String_
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.assembly.createinstance?view=netstandard-2.0#System_Reflection_Assembly_CreateInstance_System_String_
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.assembly.createinstance?view=netstandard-2.0#System_Reflection_Assembly_CreateInstance_System_String_
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.assembly.createinstance?view=netstandard-2.0#System_Reflection_Assembly_CreateInstance_System_String_
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.assembly.createinstance?view=netstandard-2.0#System_Reflection_Assembly_CreateInstance_System_String_
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.assembly.createinstance?view=netstandard-2.0#System_Reflection_Assembly_CreateInstance_System_String_
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.assembly.createinstance?view=netstandard-2.0#System_Reflection_Assembly_CreateInstance_System_String_
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.assembly.createinstance?view=netstandard-2.0#System_Reflection_Assembly_CreateInstance_System_String_
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.assembly.createinstance?view=netstandard-2.0#System_Reflection_Assembly_CreateInstance_System_String_
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.assembly.createinstance?view=netstandard-2.0#System_Reflection_Assembly_CreateInstance_System_String_
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.assembly.createinstance?view=netstandard-2.0#System_Reflection_Assembly_CreateInstance_System_String_
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.assembly.createinstance?view=netstandard-2.0#System_Reflection_Assembly_CreateInstance_System_String_
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.assembly.createinstance?view=netstandard-2.0#System_Reflection_Assembly_CreateInstance_System_String_
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.assembly.createinstance?view=netstandard-2.0#System_Reflection_Assembly_CreateInstance_System_String_
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.assembly.createinstance?view=netstandard-2.0#System_Reflection_Assembly_CreateInstance_System_String_
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.assembly.createinstance?view=netstandard-2.0#System_Reflection_Assembly_CreateInstance_System_String_
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.assembly.createinstance?view=netstandard-2.0#System_Reflection_Assembly_CreateInstance_System_String_
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.assembly.createinstance?view=netstandard-2.0#System_Reflection_Assembly_CreateInstance_System_String_
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.assembly.createinstance?view=netstandard-2.0#System_Reflection_Assembly_CreateInstance_System_String_
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.assembly.createinstance?view=netstandard-2.0#System_Reflection_Assembly_CreateInstance_System_String_
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.assembly.createinstance?view=netstandard-2.0#System_Reflection_Assembly_CreateInstance_System_String_
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.assembly.createinstance?view=netstandard-2.0#System_Reflection_Assembly_CreateInstance_System_String_
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.assembly.createinstance?view=netstandard-2.0#System_Reflection_Assembly_CreateInstance_System_String_
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.assembly.createinstance?view=netstandard-2.0#System_Reflection_Assembly_CreateInstance_System_String_
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.assembly.createinstance?view=netstandard-2.0#System_Reflection_Assembly_CreateInstance_System_String_
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.assembly.createinstance?view=netstandard-2.0#System_Reflection_Assembly_CreateInstance_System_String_
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.assembly.createinstance?view=netstandard-2.0#System_Reflection_Assembly_CreateInstance_System_String_
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.assembly.createinstance?view=netstandard-2.0#System_Reflection_Assembly_CreateInstance_System_String_
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.assembly.createinstance?view=netstandard-2.0#System_Reflection_Assembly_CreateInstance_System_String_
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.assembly.createinstance?view=netstandard-2.0#System_Reflection_Assembly_CreateInstance_System_String_
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.assembly.createinstance?view=netstandard-2.0#System_Reflection_Assembly_CreateInstance_System_String_
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.assembly.createinstance?view=netstandard-2.0#System_Reflection_Assembly_CreateInstance_System_String_
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.assembly.createinstance?view=netstandard-2.0#System_Reflection_Assembly_CreateInstance_System_String_
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.assembly.createinstance?view=netstandard-2.0#System_Reflection_Assembly_CreateInstance_System_String_
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.assembly.createinstance?view=netstandard-2.0#System_Reflection_Assembly_CreateInstance_System_String_
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.assembly.createinstance?view=netstandard-2.0#System_Reflection_Assembly_CreateInstance_System_String_
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.assembly.createinstance?view=netstandard-2.0#System_Reflection_Assembly_CreateInstance_System_String_
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.assembly.createinstance?view=netstandard-2.0#System_Reflection_Assembly_CreateInstance_System_String_
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.assembly.createinstance?view=netstandard-2.0#System_Reflection_Assembly_CreateInstance_System_String_

Day 05 - Overview of Reflection and Collections

[164]

Here is the output from the preceding code:

Reflection in use
In the previous section, we get an idea about reflection and how we can utilize the power of
Reflection to analyse the code. In this section, we will see more complex scenarios where
we can use Reflection and discuss System.Type and System.Reflection in more
detail.

Getting type info
There is a System.Type class available which provides us with the complete information
about our object type: we can use typeof to get all the information about our class. Let's see
the following code snippet:

class Program
{
 private static void Main(string[] args)
 {
 int userInput;
 do
 {
 userInput = DisplayMenu();
 switch (userInput)
 {
 // code omitted
 case 3:
 Console.Clear();
 Console.WriteLine
 ("Getting information using 'typeof' operator
 for class 'Day05.Program");
 var typeInfo = typeof(Program);

Day 05 - Overview of Reflection and Collections

[165]

 Console.WriteLine();
 Console.WriteLine("Analysis result(s):");
 Console.WriteLine
 ("=========================");
 Console.WriteLine($"Assembly:
 {typeInfo.AssemblyQualifiedName}");
 Console.WriteLine($"Name:{typeInfo.Name}");
 Console.WriteLine($"Full Name:
 {typeInfo.FullName}");
 Console.WriteLine($"Namespace:
 {typeInfo.Namespace}");
 Console.WriteLine
 ("=========================");
 PressAnyKey();
 break;
 code omitted
 }
 } while (userInput != 5);
 }
 //code omitted
}

In the previous code snippet, we used typeof to gather the information on our class
Program. The typeof operator represents a type declaration here; in our case, it is a type
declaration of class Program. Here is the result of the preceding code:

On the same node, we can we have method GetType() of the System.Type class, which
gets the type and provides the information. Let us analyse and discuss the following code
snippet:

internal class Program
{
 private static void Main(string[] args)
 {
 int userInput;
 do

Day 05 - Overview of Reflection and Collections

[166]

 {
 userInput = DisplayMenu();
 switch (userInput)
 {
 //code omitted
 case 4:
 Console.Clear();
 Console.WriteLine("Getting information using
 'GetType()' method for class
 'Day05.Program'");
 var info = Type.GetType("Day05.Program");
 Console.WriteLine();
 Console.WriteLine("Analysis result(s):");
 Console.WriteLine
 ("=========================");
 Console.WriteLine($"Assembly:
 {info.AssemblyQualifiedName}");
 Console.WriteLine($"Name:{info.Name}");
 Console.WriteLine($"Full Name:
 {info.FullName}");
 Console.WriteLine($"Namespace:
 {info.Namespace}");
 Console.WriteLine
 ("=========================");
 PressAnyKey();
 break;
 }
 } while (userInput != 5);
 }
 //code omitted
}

In the previous code snippet, we are gathering all information on class Program with the
use of GetMethod(), and it results in the following:

Day 05 - Overview of Reflection and Collections

[167]

The code snippets discussed in the previous sections had a type which represented a class
System.Type, and then we gathered the information using properties. These properties are
explained in the following table:

Property name Description

Name Returns the name of the type, for example, Program

Full Name Returns the fully qualified name of the type without the assembly name,
for example, Day05.Program

Namespace Returns the namespace of the type, for example, Day05. This property
returns null if there is no namespace

These properties are read-only (of class System.Type which is an abstract class); that
means we can only read or get the results, but they do not allow us to set the values.

The System.Reflection.TypeExtensions class has everything we
need to analyse and write code dynamically. The complete source code is
available at
https://github.com/dotnet/corefx/blob/master/src/System.Reflecti

on.TypeExtensions/src/System/Reflection/TypeExtensions.cs.

Implementation of all extension methods is beyond the scope of this book, so we added the
following table which represents all details on important extension methods:

Method name Description Source (https://github.com/dotnet/corefx/blob/master/src)

GetConstructor(Type
type, Type[] types)

Performs over the
provided type and
returns output of type
System.Reflection.
ConstructorInfo

/System.Reflection.Emit/ref/System.Reflection.Emit.cs

ConstructorInfo[]
GetConstructors(Type
type)

Returns all constructor
information for
provided type and
array outputs of
System.Reflection.
ConstructorInfo

/System.Reflection.Emit/ref/System.Reflection.Emit.cs

ConstructorInfo[]
GetConstructors(Type
type, BindingFlags
bindingAttr)

Returns all constructor
information for
provided type and
attributes

/System.Reflection.Emit/ref/System.Reflection.Emit.cs

https://github.com/dotnet/corefx/blob/master/src/System.Reflection.TypeExtensions/src/System/Reflection/TypeExtensions.cs
https://github.com/dotnet/corefx/blob/master/src/System.Reflection.TypeExtensions/src/System/Reflection/TypeExtensions.cs
https://github.com/dotnet/corefx/blob/master/src

Day 05 - Overview of Reflection and Collections

[168]

MemberInfo[]
GetDefaultMembers(Type
type)

Gets the access for
provided attribute, for
member, for given
type, and for outputs
of array
System.Reflection.
MemberInfo

/System.Reflection.Emit/ref/System.Reflection.Emit.cs

EventInfo
GetEvent(Type type,
string name)

Provides the access to
EventMetadata
outputs of
System.Reflection.
MemberInfo

/System.Reflection.Emit/ref/System.Reflection.Emit.cs

FieldInfo
GetField(Type type,
string name)

Gets the field info of
the specified type, and
for the field name
provided, and returns,
output of
System.Reflection.
FieldInfo

/System.Reflection.Emit/ref/System.Reflection.Emit.cs

MemberInfo[]
GetMember(Type type,
string name)

Gets the member info
of the specified type by
using member name,
and this method
outputs an array of
System.Reflection.
MemberInfo

/System.Reflection.Emit/ref/System.Reflection.Emit.cs

PropertyInfo[]
GetProperties(Type
type)

Provides all properties
for the specified type
and outputs as an
array of
System.Reflection.
PropertyInfo

/System.Reflection.Emit/ref/System.Reflection.Emit.cs

Try implementing all extension methods using a simple program.

In previous sections, we learned how to analyze our compiled code/application using
Reflection. Reflection works fine when we have existing code. Think of a scenario
where we require some dynamic code generation logic. Let's say we need to generate a
simple class as mentioned in following code snippet:

public class MathClass
{
 private readonly int _num1;
 private readonly int _num2;
 public MathClass(int num1, int num2)
 {
 _num1 = num1;

Day 05 - Overview of Reflection and Collections

[169]

 _num2 = num2;
 }
 public int Sum() => _num1 + _num2;
 public int Substract() => _num1 - _num2;
 public int Division() => _num1 / _num2;
 public int Mod() => _num1 % _num2;
}

Creating or writing purely dynamic code or code on the fly is not possible with the sole use
of Reflection. With the help of Reflection, we can analyze our MathClass, but we can
create this class on the fly with the use of Reflection.Emit.

Dynamic code generation is beyond the scope of this book. You can refer
to the following thread for more information:
https://stackoverflow.com/questions/41784393/how-to-emit-a-type-
in-net-core

Overview of delegates and events
In this section, we will discuss the basics of delegates and events. Both delegates and events
are the most advanced features of the C# language. We will understand these in coming
sections in detail.

Delegates
In C#, delegates are a similar concept to pointers to functions, as in C and C++. A delegate is
nothing but a variable of a reference type, which holds a reference of a method, and this
method is triggered.

We can achieve late binding using delegates. In Chapter 7, Understanding
Object Oriented Programing with C#, we will discuss late binding in detail.

System.Delegate is a class from which all delegates are derived. We use delegates to
implement events.

https://stackoverflow.com/questions/41784393/how-to-emit-a-type-in-net-core
https://stackoverflow.com/questions/41784393/how-to-emit-a-type-in-net-core

Day 05 - Overview of Reflection and Collections

[170]

Declaring a delegate type
Declaring a delegate type is similar to the method signature class. We just need to declare a
type public delegate string: PrintFizzBuzz(int number);. In the preceding code, we
declared a delegate type. This declaration is similar to an abstract method with the
difference that delegate declaration has a type delegate. We just declared a delegate type
PrintFizzBuzz, and it accepts one argument of int type and returns the result of the
string. We can only declare public or internal accessible delegates.

Accessibility of delegates is internal by default.

In the previous figure, we can analyse the syntax of the delegate declaration. If we saw this
figure, we would notice that it started with public, then the keyword delegate, which tells
us that this is a delegate type, the string, which is a return type, and our syntax is concluded
with name and passing arguments. The following table defines that declaration has major
parts:

Syntax part Description

Modifier Modifier is the defined accessibility of a delegate type. These modifiers can
be only public or internal, and by default a delegate type modifier is
internal.

Return type Delegate can or cannot return a result; it can be of any type or void.

Name The name of the declared delegate. The name of the delegate type follows
the same rules as a typical class, as discussed on day two.

Parameter list A typical parameter list; parameters can be any type.

Day 05 - Overview of Reflection and Collections

[171]

Instances of delegate
In the previous section, we created a delegate type named PrintFizzBuzz. Now we need
to declare an instance of this type so we can use the same in our code. This is similar to the
way we declared variables—please refer to day two to know more about the declaration of
variables. The following code snippet tells us how we can declare an instance of our
delegate type:

PrintFizzBuzz printFizzBuzz;

Delegates in use
We can directly use delegate types by calling matching methods, which means the delegate
type invokes a related method. In the following code snippet, we are simply invoking a
method:

internal class Program
{
 private static PrintFizzBuzz _printFizzBuzz;
 private static void Main(string[] args)
 {
 int userInput;
 do
 {
 userInput = DisplayMenu();
 switch (userInput)
 {
 //code omitted
 case 6:
 Clear();
 Write("Enter number: ");
 var inputNum = ReadLine();
 _printFizzBuzz = FizzBuzz.PrintFizzBuzz;
 WriteLine($"Entered number:{inputNum} is
 {_printFizzBuzz(Convert.ToInt32(inputNum))}");
 PressAnyKey();
 break;
 }
 } while (userInput != 7);
 }

Day 05 - Overview of Reflection and Collections

[172]

In the code snippet written in the previous section, we are taking an input from the user
and then, with the help of the delegate, we are getting the expected results. The following
screenshot shows the complete output of the preceding code:

More advanced delegates, namely multicast, and strongly typed delegates
will be discussed on day six.

Events
In general, whenever events come into the picture, we can think about an action for the user
or user action. There are a couple of examples from our daily life; namely we check our
emails, send emails, and so on. Actions such as clicking a send button or receive button
from our email clients are nothing but events.

Events are members of a type, and this type is of delegate type. These members notify to
other types when raised.

Events use the publisher-subscriber model. A publisher is nothing but an object which has a
definition of the event and the delegate. On the other hand, a subscriber is an object which
accepts the events and provides the event handler (event handlers are nothing but a method
which is invoked by delegates in the publisher class).

Day 05 - Overview of Reflection and Collections

[173]

Declaring an event
Before we declare an event, we should have a delegate type, so we should first declare a
delegate. The following code snippet shows delegate type:

public delegate string FizzBuzzDelegate(int num);
The following code snippet shows event declaration:
public event FizzBuzzDelegate FizzBuzzEvent;
The following code snippet shows a complete implementation of an event to
find FizzBuzz numbers:
public delegate string FizzBuzzDelegate(int num);
public class FizzBuzzImpl
{
 public FizzBuzzImpl()
 {
 FizzBuzzEvent += PrintFizzBuzz;
 }
 public event FizzBuzzDelegate FizzBuzzEvent;
 private string PrintFizzBuzz(int num) => FizzBuzz.PrintFizzBuzz(num);
 public string EventImplementation(int num)
 {
 var fizzBuzImpl = new FizzBuzzImpl();
 return fizzBuzImpl.FizzBuzzEvent(num);
 }
}

The code snippet written in the previous section defines how the event internally called the
attached method of delegate type. Here, we have an event called FizzBuzzEvent that is
attached to a delegate type named FizzBuzzDelegate, which called a method
PrintFizzBuzz on instantiation of our class named FizzBuzzImpl. Hence, whenever we
call our event FizzBuzzEvent, it automatically calls a method PrintFizzBuzz and
returns the expected results:

Day 05 - Overview of Reflection and Collections

[174]

Collections and non-generics
On day two, we learned about arrays, which are of fixed size, and you can use these for
strongly typed list objects. But what about if we want to use or organize these objects into
other data structures such as queues, lists, stacks, and so on? All these we can achieve with
the use of collections (System.Collections).

There are various ways to play with data (storage and retrieval) with the use of collections.
The following are the main collection classes we can use.

System.Collections.NonGeneric (https:/ ​/​www. ​nuget. ​org/ ​packages/
System. ​Collections. ​NonGeneric/ ​) is a NuGet package which provides
all non-generic types, namely ArrayList, HashTable, Stack,
SortedList, Queue, and so on.

ArrayList
As it is an array, it contains an ordered collection of an object and can be indexed
individually. As this is a non-generic class, it is available under a separate NuGet package
from System.Collections.NonGeneric. To work with the example code, you should
first install this NuGet package.

https://www.nuget.org/packages/System.Collections.NonGeneric/
https://www.nuget.org/packages/System.Collections.NonGeneric/
https://www.nuget.org/packages/System.Collections.NonGeneric/
https://www.nuget.org/packages/System.Collections.NonGeneric/
https://www.nuget.org/packages/System.Collections.NonGeneric/
https://www.nuget.org/packages/System.Collections.NonGeneric/
https://www.nuget.org/packages/System.Collections.NonGeneric/
https://www.nuget.org/packages/System.Collections.NonGeneric/
https://www.nuget.org/packages/System.Collections.NonGeneric/
https://www.nuget.org/packages/System.Collections.NonGeneric/
https://www.nuget.org/packages/System.Collections.NonGeneric/
https://www.nuget.org/packages/System.Collections.NonGeneric/
https://www.nuget.org/packages/System.Collections.NonGeneric/
https://www.nuget.org/packages/System.Collections.NonGeneric/
https://www.nuget.org/packages/System.Collections.NonGeneric/
https://www.nuget.org/packages/System.Collections.NonGeneric/
https://www.nuget.org/packages/System.Collections.NonGeneric/

Day 05 - Overview of Reflection and Collections

[175]

Declaration of ArrayList
The declaring part is very simple: you can just define it as a variable of the ArrayList type.
The following code snippet shows how we can declare ArrayList:

ArrayList arrayList = new ArrayList();
ArrayList arrayList1 = new ArrayList(capacity);
ArrayList arrayList2 = new ArrayList(collection);

In the preceding code snippet, arrayList is initialized using the default constructor.
arrayList1 is initialized for a specific initial capacity. arrayList2 is initialized using an
element of another collection.

The ArrayList properties and methods are important to add, store, or remove our data
items from our collections. There are many properties and methods available for the
ArrayList class. In the upcoming sections, we will discuss commonly used methods and
properties.

Properties
The properties of ArrayList play a vital role while analysing an existing ArrayList; the
following are the commonly used properties:

Property Description

Capacity A getter setter property; with the use of this, we can set or get the number
of elements of ArrayList.
For example:
ArrayList arrayList = new ArrayList {Capacity = 50};

Count Total actual number of elements ArrayList contains. Please note that this
count may differ from capacity.
For example:
ArrayList arrayList = new ArrayList {Capacity = 50};
var numRandom = new Random(50);
for (var countIndex = 0; countIndex < 50; countIndex++)
arrayList.Add(numRandom.Next(50));

IsFixedSize A getter property returns true/false on the basis of whether ArrayList is
of fixed size or not.
For example:
ArrayList arrayList = new ArrayList();
var arrayListIsFixedSize = arrayList.IsFixedSize;

Day 05 - Overview of Reflection and Collections

[176]

Methods
As we discussed in the previous section, properties play important roles while we're
working with ArrayList. In the same node, methods provide us a way to add, remove, or
perform other operations while working with non-generic collections:

Method Description

Add (object value) Adds an object to the end of ArrayList.
For example:
ArrayList arrayList = new ArrayList {Capacity = 50};
var numRandom = new Random(50);
for (var countIndex = 0; countIndex < 50;
countIndex++)
arrayList.Add(numRandom.Next(50));

Void Clear() Removes all elements from ArrayList.
For example:
arrayList.Clear();

Void Remove(object
obj)

Removes first occurred element in the collection.
For example:
arrayList.Remove(15);

Void Sort() Sorts all the elements in ArrayList

The following code snippet is a complete example showing ArrayList:

public void ArrayListExample(int count)
{
var arrayList = new ArrayList();
var numRandom = new Random(count);
WriteLine($"Creating an ArrayList with capacity: {count}");
for (var countIndex = 0; countIndex < count; countIndex++)
arrayList.Add(numRandom.Next(count));
WriteLine($"Capacity: {arrayList.Capacity}");
WriteLine($"Count: {arrayList.Count}");
Write("ArrayList original contents: ");
PrintArrayListContents(arrayList);
WriteLine();
arrayList.Reverse();
Write("ArrayList reversed contents: ");
PrintArrayListContents(arrayList);
WriteLine();
Write("ArrayList sorted Content: ");
arrayList.Sort();
PrintArrayListContents(arrayList);

Day 05 - Overview of Reflection and Collections

[177]

WriteLine();
ReadKey();
}

The following is the output of the preceding program:

You will learn all advanced concepts of collections and generics on day
six.

HashTable
A non-generic type, the hashTable class is nothing but a representation of collections of
key/value pairs and is organized on the basis of a key, which is nothing but a hash code.
The use of hashTable is advisable when we need to access data on the basis of a key.

Declaration of HashTable
Hashtable can be declared by initializing the Hashtable class; the following code snippet
shows the same:

Hashtable hashtable = new Hashtable();

We will discuss commonly used methods and properties of HashTable next.

Day 05 - Overview of Reflection and Collections

[178]

Properties
The properties of hashTable play a vital role while analyzing an existing HashTable; the
following are the commonly used properties:

Property Description

Count A getter property; returns number of key/value pairs in the HashTable.
For example:
var hashtable = new Hashtable
{
{1, "Gaurav Aroraa"},
{2, "Vikas Tiwari"},
{3, "Denim Pinto"},
{4, "Diwakar"},
{5, "Merint"}
};
var count = hashtable.Count;

IsFixedSize A getter property; returns true/false on the basis of whether the
HashTable is of fixed size or not.
For example:
var hashtable = new Hashtable
{
{1, "Gaurav Aroraa"},
{2, "Vikas Tiwari"},
{3, "Denim Pinto"},
{4, "Diwakar"},
{5, "Merint"}
};
var fixedSize = hashtable.IsFixedSize ? " fixed size." : " not
fixed size.";
WriteLine($"HashTable is {fixedSize} .");

IsReadOnly A getter property; tells us whether Hashtable is read-only or not.
For example:
WriteLine($"HashTable is ReadOnly : {hashtable.IsReadOnly} ");

Day 05 - Overview of Reflection and Collections

[179]

Methods
The methods of HashTable provide a way to add, remove, and analyze the collection by
providing more operations, as discussed in the following table:

Method Description

Add (object key, object
value)

Adds an element of a specific key and value to HashTable.
For example:
var hashtable = new Hashtable
hashtable.Add(11,"Rama");

Void Clear() Removes all elements from HashTable.
For example:
hashtable.Clear();

Void Remove (object
key)

Removes element of a specified key from HashTable.
For example:
hashtable.Remove(15);

In the following section, we will implement a simple HashTable with the use of a code
snippet where we will create a HashTable collection, and will try to reiterate its keys:

public void HashTableExample()
{
 WriteLine("Creating HashTable");
 var hashtable = new Hashtable
 {
 {1, "Gaurav Aroraa"},
 {2, "Vikas Tiwari"},
 {3, "Denim Pinto"},
 {4, "Diwakar"},
 {5, "Merint"}
 };
 WriteLine("Reading HashTable Keys");
 foreach (var hashtableKey in hashtable.Keys)
 {
 WriteLine($"Key :{hashtableKey} - value :
 {hashtable[hashtableKey]}");
 }
}

Day 05 - Overview of Reflection and Collections

[180]

The following is the output of the preceding code:

SortedList
A non-generic type, the SortedList class is nothing but a representation of collections of
key/value pairs, organized on the basis of a key, and is sorted by key. SortedList is a
combination of ArrayList and HashTable. So, we can access the elements by key or index.

Declaration of SortedList
SortedList can be declared by initializing the SortedList class; the following code
snippet shows the same:

SortedList sortedList = new SortedList();

We will discuss commonly used methods and properties of SortedList next.

Day 05 - Overview of Reflection and Collections

[181]

Properties
The properties of SortedList play a vital role while analyzing an existing SortedList;
the following are the commonly used properties:

Property Description

Capacity A getter setter property; with the use of this, we can set or get the capacity
of SortedList.
For example:
var sortedList = new SortedList
{
{1, "Gaurav Aroraa"},
{2, "Vikas Tiwari"},
{3, "Denim Pinto"},
{4, "Diwakar"},
{5, "Merint"},
{11, "Rama"}
};
WriteLine($"Capacity: {sortedList.Capacity}");

Count A getter property; returns number of key/value pairs in the HashTable.
For example:
var sortedList = new SortedList
{
{1, "Gaurav Aroraa"},
{2, "Vikas Tiwari"},
{3, "Denim Pinto"},
{4, "Diwakar"},
{5, "Merint"},
{11, "Rama"}
};
WriteLine($"Capacity: {sortedList.Count}");

Day 05 - Overview of Reflection and Collections

[182]

IsFixedSize A getter property; returns true/false on the basis of whether SortedList
is of fixed size or not.
For example:
var sortedList = new SortedList
{
{1, "Gaurav Aroraa"},
{2, "Vikas Tiwari"},
{3, "Denim Pinto"},
{4, "Diwakar"},
{5, "Merint"},
{11, "Rama"}
};
ar fixedSize = sortedList.IsFixedSize ? " fixed size." : " not
fixed size.";
WriteLine($"SortedList is {fixedSize} .");

IsReadOnly A getter property; tells us whether SortedList is read-only or not.
For example:
WriteLine($"SortedList is ReadOnly : {sortedList.IsReadOnly} ");

Methods
The following are the commonly used methods:

Method Description

Add (object key,
object value)

Adds an element of a specific key and value to SortedList.
For example:
var sortedList = new SortedList
sortedList.Add(11,"Rama");

Void Clear() Removes all elements from SortedList.
For example:
sortedList.Clear();

Void Remove (object
key)

Removes an element of specified key from SortedList.
For example:
sortedList.Remove(15);

In the upcoming section, we will implement code with the use of the properties and
methods mentioned in previous sections. Let's collect a list of all stakeholders of the book
Learn C# in 7 days with the use of SortedList:

public void SortedListExample()
{
 WriteLine("Creating SortedList");

Day 05 - Overview of Reflection and Collections

[183]

 var sortedList = new SortedList
 {
 {1, "Gaurav Aroraa"},
 {2, "Vikas Tiwari"},
 {3, "Denim Pinto"},
 {4, "Diwakar"},
 {5, "Merint"},
 {11, "Rama"}
 };
 WriteLine("Reading SortedList Keys");
 WriteLine($"Capacity: {sortedList.Capacity}");
 WriteLine($"Count: {sortedList.Count}");
 var fixedSize = sortedList.IsFixedSize ? " fixed
 size." :" not fixed size.";
 WriteLine($"SortedList is {fixedSize} .");
 WriteLine($"SortedList is ReadOnly :
 {sortedList.IsReadOnly} ");
 foreach (var key in sortedList.Keys)
 {
 WriteLine($"Key :{key} - value :
 {sortedList[key]}");
 }
}

The following is the output of the preceding code:

Day 05 - Overview of Reflection and Collections

[184]

Stack
A non-generic type, it represents a collection as last in, first out (LIFO) of objects. It
contains two main things: Push and Pop. Whenever we're inserting an item into the list, it is
called pushing, and when we extract/remove an item from the list, it's called popping.
When we get an object without removing the item from the list, it is called peeking.

Declaration of Stack
The declaration of Stack is very similar to the way we declared other non-generic types.
The following code snippet shows the same:

Stack stackList = new Stack();

We will discuss commonly used methods and properties of Stack.

Properties
The Stack class has only one property, which tells the count:

Property Description

Count A getter property; returns number of elements a stack contains.
For example:
var stackList = new Stack();
stackList.Push("Gaurav Aroraa");
stackList.Push("Vikas Tiwari");
stackList.Push("Denim Pinto");
stackList.Push("Diwakar");
stackList.Push("Merint");
WriteLine($"Count: {stackList.Count}");

Methods
The following are the commonly used methods:

Method Description

Object Peek() Returns the object at the top of the stack but does not remove
it.
For example:
WriteLine($"Next value without
removing:{stackList.Peek()}");

Day 05 - Overview of Reflection and Collections

[185]

Object Pop() Removes and returns the object at the top of the stack.
For example:
WriteLine($"Remove item: {stackList.Pop()}");

Void Push(object
obj)

Inserts an object at the top of the stack.
For example:
WriteLine("Adding more items.");
stackList.Push("Rama");
stackList.Push("Shama");

Void Clear() Removes all elements from the stack.
For example:
var stackList = new Stack();
stackList.Push("Gaurav Aroraa");
stackList.Push("Vikas Tiwari");
stackList.Push("Denim Pinto");
stackList.Push("Diwakar");
stackList.Push("Merint");
stackList.Clear();

The following is the complete example of stack:

public void StackExample()
{
 WriteLine("Creating Stack");
 var stackList = new Stack();
 stackList.Push("Gaurav Aroraa");
 stackList.Push("Vikas Tiwari");
 stackList.Push("Denim Pinto");
 stackList.Push("Diwakar");
 stackList.Push("Merint");
 WriteLine("Reading stack items");
 ReadingStack(stackList);
 WriteLine();
 WriteLine($"Count: {stackList.Count}");
 WriteLine("Adding more items.");
 stackList.Push("Rama");
 stackList.Push("Shama");
 WriteLine();
 WriteLine($"Count: {stackList.Count}");
 WriteLine($"Next value without removing:
 {stackList.Peek()}");
 WriteLine();
 WriteLine("Reading stack items.");
 ReadingStack(stackList);
 WriteLine();
 WriteLine("Remove value");

Day 05 - Overview of Reflection and Collections

[186]

 stackList.Pop();
 WriteLine();
 WriteLine("Reading stack items after removing an
 item.");
 ReadingStack(stackList);
 ReadLine();
}

The previous code captures a list of stakeholders for the book Learning C# in 7 days using
Stack, and showing the usage of properties and methods discussed in previous sections.
This code resulted in the output shown in the following screenshot:

Day 05 - Overview of Reflection and Collections

[187]

Queue
Queue is just a non-generic type that represents a FIFO collection of an object. There are two
main actions of queue: when adding an item, it is called enqueuer, and when removing an
item, it is called dequeue.

Declaration of Queue
The declaration of Queue is very similar to the way we declared other non-generic types.
The following code snippet shows the same:

Queue queue = new Queue();

We will discuss commonly used methods and properties of Queue next.

Properties
The Queue class has only one property, which tells the count:

Property Description

Count A getter property; returns the number of elements queue contained.
For example:
Queue queue = new Queue();
queue.Enqueue("Gaurav Aroraa");
queue.Enqueue("Vikas Tiwari");
queue.Enqueue("Denim Pinto");
queue.Enqueue("Diwakar");
queue.Enqueue("Merint");
WriteLine($"Count: {queue.Count}");

Methods
The following are the commonly used methods:

Method Description

Object Peek() Returns the object at the top of the queue but does not remove
it.
For example:
WriteLine($"Next value without
removing:{stackList.Peek()}");

Day 05 - Overview of Reflection and Collections

[188]

Object Dequeue() Removes and returns the object at the beginning of the queue.
For example:
WriteLine($"Remove item: {queue.Dequeue()}");

Void Enqueue
(object obj)

Inserts an object at the end of the queue.
For example:
WriteLine("Adding more items.");
queue.Enqueue("Rama");

Void Clear() Removes all elements from Queue.
For example:
Queue queue = new Queue();
queue.Enqueue("Gaurav Aroraa");
queue.Enqueue("Vikas Tiwari");
queue.Enqueue("Denim Pinto");
queue.Enqueue("Diwakar");
queue.Enqueue("Merint");
queue.Clear();

The previous sections discussed properties and methods. Now it's time to implement these
properties and methods in a real-world implementation. Let's create a queue that contains
stockholders names for the book Learn C# in 7 days. The following code snippet is using the
Enqueue and Dequeue methods to add and remove the items from the collections stored
using queue:

public void QueueExample()
{
 WriteLine("Creating Queue");
 var queue = new Queue();
 queue.Enqueue("Gaurav Aroraa");
 queue.Enqueue("Vikas Tiwari");
 queue.Enqueue("Denim Pinto");
 queue.Enqueue("Diwakar");
 queue.Enqueue("Merint");
 WriteLine("Reading Queue items");
 ReadingQueue(queue);
 WriteLine();
 WriteLine($"Count: {queue.Count}");
 WriteLine("Adding more items.");
 queue.Enqueue("Rama");
 queue.Enqueue("Shama");
 WriteLine();
 WriteLine($"Count: {queue.Count}");
 WriteLine($"Next value without removing:
 {queue.Peek()}");
 WriteLine();

Day 05 - Overview of Reflection and Collections

[189]

 WriteLine("Reading queue items.");
 ReadingQueue(queue);
 WriteLine();
 WriteLine($"Remove item: {queue.Dequeue()}");
 WriteLine();
 WriteLine("Reading queue items after removing an
 item.");
 ReadingQueue(queue);
}

The following is the output of the preceding code:

Day 05 - Overview of Reflection and Collections

[190]

BitArray
BitArray is nothing but an array which manages an array of bit values. These values are
represented as Boolean. True means bit is ON (1) and false means bit is OFF(0). This non-
generic collection class is important when we need to store the bits.

The implementation of BitArray is not covered. Please refer to the exercises at the end of the
chapter to implement BitArray.

We have discussed non-generic collections in this chapter. Generic
collections are beyond the scope of this chapter; we will cover them on day
six. To compare different collections, refer to https:/ ​/​www. ​codeproject.
com/​Articles/ ​832189/ ​List-​vs- ​IEnumerable- ​vs- ​IQueryable- ​vs-
ICollection- ​v.

Hands - on exercise
Solve the following questions, which cover the concepts from today's learning:

What is reflection? Write a short program to use System.Type.1.
Create a class that contains at least three properties, two constructors, two public2.
methods, and three private methods, and implements at least one interface.
Write a program with the use of System.Reflection.Extensins to assess the3.
class created in question two.
Study the NuGet package System.Reflection.TypeExtensions and write a4.
program by implementing all of its features.
Study the NuGet package System.Reflection. Primitives and write a5.
program by implementing all of its features.
What are delegate types and how can you define multicast delegates?6.
What are events? How are events are based on the publisher-subscriber model?7.
Show this with the use of a real-world example.
Write a program using delegates and events to get an output similar to https:/ ​/8.
github.​com/ ​garora/ ​TDD- ​Katas#string- ​sum- ​kata.
Define collections and implement non-generic types.9.

Refer to our problem from day one, the vowel count problem, and
implement this using all non-generic collection types.

https://www.codeproject.com/Articles/832189/List-vs-IEnumerable-vs-IQueryable-vs-ICollection-v
https://www.codeproject.com/Articles/832189/List-vs-IEnumerable-vs-IQueryable-vs-ICollection-v
https://www.codeproject.com/Articles/832189/List-vs-IEnumerable-vs-IQueryable-vs-ICollection-v
https://www.codeproject.com/Articles/832189/List-vs-IEnumerable-vs-IQueryable-vs-ICollection-v
https://www.codeproject.com/Articles/832189/List-vs-IEnumerable-vs-IQueryable-vs-ICollection-v
https://www.codeproject.com/Articles/832189/List-vs-IEnumerable-vs-IQueryable-vs-ICollection-v
https://www.codeproject.com/Articles/832189/List-vs-IEnumerable-vs-IQueryable-vs-ICollection-v
https://www.codeproject.com/Articles/832189/List-vs-IEnumerable-vs-IQueryable-vs-ICollection-v
https://www.codeproject.com/Articles/832189/List-vs-IEnumerable-vs-IQueryable-vs-ICollection-v
https://www.codeproject.com/Articles/832189/List-vs-IEnumerable-vs-IQueryable-vs-ICollection-v
https://www.codeproject.com/Articles/832189/List-vs-IEnumerable-vs-IQueryable-vs-ICollection-v
https://www.codeproject.com/Articles/832189/List-vs-IEnumerable-vs-IQueryable-vs-ICollection-v
https://www.codeproject.com/Articles/832189/List-vs-IEnumerable-vs-IQueryable-vs-ICollection-v
https://www.codeproject.com/Articles/832189/List-vs-IEnumerable-vs-IQueryable-vs-ICollection-v
https://www.codeproject.com/Articles/832189/List-vs-IEnumerable-vs-IQueryable-vs-ICollection-v
https://www.codeproject.com/Articles/832189/List-vs-IEnumerable-vs-IQueryable-vs-ICollection-v
https://www.codeproject.com/Articles/832189/List-vs-IEnumerable-vs-IQueryable-vs-ICollection-v
https://www.codeproject.com/Articles/832189/List-vs-IEnumerable-vs-IQueryable-vs-ICollection-v
https://www.codeproject.com/Articles/832189/List-vs-IEnumerable-vs-IQueryable-vs-ICollection-v
https://www.codeproject.com/Articles/832189/List-vs-IEnumerable-vs-IQueryable-vs-ICollection-v
https://www.codeproject.com/Articles/832189/List-vs-IEnumerable-vs-IQueryable-vs-ICollection-v
https://www.codeproject.com/Articles/832189/List-vs-IEnumerable-vs-IQueryable-vs-ICollection-v
https://www.codeproject.com/Articles/832189/List-vs-IEnumerable-vs-IQueryable-vs-ICollection-v
https://www.codeproject.com/Articles/832189/List-vs-IEnumerable-vs-IQueryable-vs-ICollection-v
https://www.codeproject.com/Articles/832189/List-vs-IEnumerable-vs-IQueryable-vs-ICollection-v
https://www.codeproject.com/Articles/832189/List-vs-IEnumerable-vs-IQueryable-vs-ICollection-v
https://www.codeproject.com/Articles/832189/List-vs-IEnumerable-vs-IQueryable-vs-ICollection-v
https://github.com/garora/TDD-Katas#string-sum-kata
https://github.com/garora/TDD-Katas#string-sum-kata
https://github.com/garora/TDD-Katas#string-sum-kata
https://github.com/garora/TDD-Katas#string-sum-kata
https://github.com/garora/TDD-Katas#string-sum-kata
https://github.com/garora/TDD-Katas#string-sum-kata
https://github.com/garora/TDD-Katas#string-sum-kata
https://github.com/garora/TDD-Katas#string-sum-kata
https://github.com/garora/TDD-Katas#string-sum-kata
https://github.com/garora/TDD-Katas#string-sum-kata
https://github.com/garora/TDD-Katas#string-sum-kata
https://github.com/garora/TDD-Katas#string-sum-kata
https://github.com/garora/TDD-Katas#string-sum-kata
https://github.com/garora/TDD-Katas#string-sum-kata
https://github.com/garora/TDD-Katas#string-sum-kata
https://github.com/garora/TDD-Katas#string-sum-kata

Day 05 - Overview of Reflection and Collections

[191]

Revisiting Day 05
Today, we have discussed very important concepts of C#, covering reflection, collections,
delegates, and events.

We discussed the importance of reflection in our code analysis approach. During the
discussion, we implemented code showing the power of reflection, where we analyzed the
complete code.

Then we discussed delegates and events and how delegates and events work in C#. We also
implemented delegates and events.

One of the important and key features of the C# language that we discussed in detail was
non-generic types, namely ArrayList, HashTable, SortedList, Queue, Stack, and so on.
We implemented all these using C# 7.0 code.

6
Day 06 - Deep Dive with

Advanced Concepts
Today is day six of our seven-day learning series. On day five, we discussed important
concepts of the C# language and went through reflection, collections, delegates, and events.
We explored these concepts using a code snippet, where we discussed non-generic
collections. Today, we will discuss the main power of collections using generic types, and
then, we will cover preprocessor directives and attributes.

We will cover the following topics in this chapter:

Playing with collections and generics
Beautifying code using attributes
Leveraging Preprocessor Directives
Getting started with LINQ
Writing unsafe code
Writing asynchronous code
Revisiting Day 6
Hands-on exercise

Playing with collections and generics
Collections are not new for us, as we went through and discussed non-generic collections
on day five. So, we also have generic collections. In this section, we will discuss all about
collections and generics with the use of code examples.

Day 06 - Deep Dive with Advanced Concepts

[193]

Understanding collection classes and their usage
As discussed on day five, collection classes are specialized classes and are meant for data
interaction (storage and retrieval). We have already discussed various collection classes,
namely
stacks, queues, lists, and hash tables, and we have written code using the
System.Collections.NonGeneric namespace. The following table provides us an
overview of the usage and meaning of non-generic collection classes:

Property Description Usage

ArrayList The name itself describes that this
contains a collection of ordered
collection that can be accessed using
index.
We can declare ArrayList as follows:
ArrayList arrayList = new
ArrayList();

On day two, we discussed arrays
and went through how to access
the individual elements of an
array. In the case of ArrayList,
we can get the benefits of various
methods to add or remove
elements of collections, as
discussed on day five.

HashTable HashTable is nothing but a
representation of collections of a key-
value-pair and are organized on the
basis of a key, which is nothing more
than a
hash code. The use of HashTable is
advisable when we need to access data
on the basis of a key.
We can declare HashTable as follows:
Hashtable hashtable = new
Hashtable();

HashTable is very useful when
we need to access elements with
the use of a key. In such
scenarios, we have a key and
need to find values in the
collection on the basis of a key.

Day 06 - Deep Dive with Advanced Concepts

[194]

SortedList The SortedList class is nothing but a
representation of collections of a key-
value-pair and are organized on the
basis of a key and are sorted by key.
SortedList classes are a combination
of ArrayList and HashTable. So, we
can access the elements using the key or
the index.
We can declare SortedList as follows:
SortedList sortedList = new
SortedList();

As stated, a sorted list is a
combination of an array and a
hash table.
Items can be accessed using a key
or an index. This is ArrayList
when items are accessed using an
index; on the other hand, it is
HashTable when items are
accessed using a hash key. The
main thing in SortedList is that
the collection of items is always
sorted by the key value.

Stack Stack represents a collection of objects;
the objects are accessible in the order of
Last In First Out (LIFO).
It contains two main operations: push
and pop. Whenever we insert an item to
the list, it is called pushing, and when
we extract/remove an item from the list,
it is called popping. When we get an
object without removing the item from
the list, it is called peeking.
We can declare it as follows:
Stack stackList = new Stack();

This is important to use when
items that were inserted last need
to be retrieved first.

Queue Queue represents a First In First
Out(FIFO) collection of objects.
There are two main actions in queue--
adding an item is called enqueue and
removing an item is called deque.
We can declare a Queue as follows:
Queue queue = new Queue();

This is important when items that
were inserted first need to be
retrieved first.

BitArray BitArray is nothing but an array that
manages an array of bit values. These
values are represented as Boolean. True
means ON (1) and False means OFF(0).
We can declare BitArray as follows:
BitArray bitArray = new
BitArray(8);

This non-generic collection class
is important when we need to
store the bits.

Day 06 - Deep Dive with Advanced Concepts

[195]

The preceding table only shows non-generic collection classes. With the use of generics, we
can also implement generic collection classes by taking the help of the
System.Collections namespace. In the coming sections, we will discuss generic
collection classes.

Performance - BitArray versus boolArray
In the previous table, we discussed that BitArray is just an array that manages true or false
values (0 or 1). But internally, BitArray performed round eight per element for a Byte and
undergoes in various logical operations and need more CPU cycles. On the other hand, a
boolArray (bool[]) stores each element as 1-byte, so it takes more memory but requires
fewer CPU cycles. BitArray over bool[] is memory optimizer.

Let's consider the following performance test and see how BitArray performs:

private static long BitArrayTest(int max)
{
 Stopwatch stopwatch = Stopwatch.StartNew();
 var bitarray = new BitArray(max);
 for (int index = 0; index < bitarray.Length; index++)
 {
 bitarray[index] = !bitarray[index];
 WriteLine($"'bitarray[{index}]' = {bitarray[index]}");
 }
 stopwatch.Stop();
 return stopwatch.ElapsedMilliseconds;
}

In the preceding code snippet, we are just testing BitArray performance by applying a
very simple test, where we run a for loop up to the maximum count of int MaxValue.

The following code snippet is for a simple test performed for bool[] to make this test
simpler; we just initiated a for loop up to the maximum value of int.MaxValue:

private static long BoolArrayTest(int max)
{
 Stopwatch stopwatch = Stopwatch.StartNew();
 var boolArray = new bool[max];
 for (int index = 0; index < boolArray.Length; index++)
 {
 boolArray[index] = !boolArray[index];
 WriteLine($"'boolArray[{index}]' = {boolArray[index]}");
 }
 stopwatch.Stop();

Day 06 - Deep Dive with Advanced Concepts

[196]

 return stopwatch.ElapsedMilliseconds;
}

The following code snippet makes a call to the BitArrayTest and BoolArrayTest
methods:

private static void BitArrayBoolArrayPerformance()
{
 //This is a simple test
 //Not testing bitwiseshift etc.
 WriteLine("BitArray vs. Bool Array performance test.\n");
 WriteLine($"Total elements of bit array: {int.MaxValue}");
 PressAnyKey();
 WriteLine("Starting BitArray Test:");
 var bitArrayTestResult = BitArrayTest(int.MaxValue);
 WriteLine("Ending BitArray Test:");
 WriteLine($"Total timeElapsed: {bitArrayTestResult}");

 WriteLine("\nStarting BoolArray Test:");
 WriteLine($"Total elements of bit array: {int.MaxValue}");
 PressAnyKey();
 var boolArrayTestResult = BoolArrayTest(int.MaxValue);
 WriteLine("Ending BitArray Test:");
 WriteLine($"Total timeElapsed: {boolArrayTestResult}");
}

On my machine, BitArrayTest took six seconds and BoolArrayTest took 15 seconds.

From the preceding tests we can conclude that bool arrays consume eight times the
size/space that could represent the values. In simpler words, bool arrays require 1 byte per
element.

Understanding generics and their usage
In simple words, with the help of generics, we can create or write code for a class that is
meant to accept different data types for which it is written. Let's say if a generic class is
written in a way to accept a structure, then it will accept int, string, or custom structures.
This class is also known as a generic class. This works more magically when it allows us to
define the data type when we declare an instance of this generic class. Let's study the
following code snippet, where we define a generic class and provide data types on the
creation of its instance:

 IList<Person> persons = new List<Person>()

Day 06 - Deep Dive with Advanced Concepts

[197]

In the previous code snippet, we declare a persons variable of a generic type, List. Here,
we have Person as a strong type. The following is the complete code snippet that populates
this strongly typed list:

private static IEnumerable<Person> CreatePersonList()
 {
 IList<Person> persons = new List<Person>
 {
 new Person
 {
 FirstName = "Denim",
 LastName = "Pinto",
 Age = 31
 },
 new Person
 {
 FirstName = "Vikas",
 LastName = "Tiwari",
 Age = 25
 },
 new Person
 {
 FirstName = "Shivprasad",
 LastName = "Koirala",
 Age = 40
 },
 new Person
 {
 FirstName = "Gaurav",
 LastName = "Aroraa",
 Age = 43
 }
 };

 return persons;
 }

The preceding code snippet showed the initiation of a list of the Person type and its
collection items. These items can be iterated as mentioned in the following code snippet:

private static void Main(string[] args)
 {
 WriteLine("Person list:");
 foreach (var person in Person.GetPersonList())
 {
 WriteLine($"Name:{person.FirstName} {person.LastName}");
 WriteLine($"Age:{person.Age}");
 }

Day 06 - Deep Dive with Advanced Concepts

[198]

 ReadLine();
 }

We will get the following output after running the preceding code snippet:

We can create a generic list to a strongly typed list, which can accept types other than
Person. For this, we just need to create a list like this:

private IEnumerable<T> CreateGenericList<T>()
{
 IList<T> persons = new List<T>();
 //other stuffs

 return persons;
}

In the preceding code snippet T could be Person or any related type.

Collections and generics
On day two, you learned about arrays of a fixed size. You can use fixed-size arrays for
strongly typed list objects. But what if we want to use or organize these objects into other
data structures, such as queue, list, stack, and so on? We can achieve all these with the use
of collections (System.Collections).

Day 06 - Deep Dive with Advanced Concepts

[199]

System.Collections (https:/ ​/ ​www. ​nuget. ​org/ ​packages/ ​System. ​Collections/ ​) is a
NuGet package that provides all the generic types, and the following are the frequently
used types:

Generic collection types Description

System.Collections.Generic.List<T> A strongly typed
generic list

System.Collections.Generic.Dictionary<TKey, TValue> A strongly typed
generic dictionary
with a key-value pair

System.Collections.Generic.Queue<T> A generic Queue

System.Collections.Generic.Stack<T> A generic Stack

System.Collections.Generic.HashSet<T> A generic HashSet

System.Collections.Generic.LinkedList<T> A generic
LinkedList

System.Collections.Generic.SortedDictionary<TKey,
TValue>

A generic
SortedDictionary

with a key-value pair
collection and sorted
on key.

The preceding table is just an overview of generic classes of the
System.Collections.Generics namespace. In the coming sections, we will discuss
generic collections in detail with the help of code examples.

For a complete list of classes, structures, and interfaces of the
System.Collections.Generics namespace, visit the official
documentations link at https:/ ​/​docs. ​microsoft. ​com/ ​en-​us/ ​dotnet/ ​api/
system. ​collections. ​generic? ​view= ​netcore- ​2. ​0.

https://www.nuget.org/packages/System.Collections/
https://www.nuget.org/packages/System.Collections/
https://www.nuget.org/packages/System.Collections/
https://www.nuget.org/packages/System.Collections/
https://www.nuget.org/packages/System.Collections/
https://www.nuget.org/packages/System.Collections/
https://www.nuget.org/packages/System.Collections/
https://www.nuget.org/packages/System.Collections/
https://www.nuget.org/packages/System.Collections/
https://www.nuget.org/packages/System.Collections/
https://www.nuget.org/packages/System.Collections/
https://www.nuget.org/packages/System.Collections/
https://www.nuget.org/packages/System.Collections/
https://www.nuget.org/packages/System.Collections/
https://www.nuget.org/packages/System.Collections/
https://www.nuget.org/packages/System.Collections/
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic?view=netcore-2.0
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic?view=netcore-2.0

Day 06 - Deep Dive with Advanced Concepts

[200]

Why should we use generics?
For non-generic lists, we use collections from the universal base of the object type [https:/ ​/
docs.​microsoft.​com/ ​en- ​us/ ​dotnet/ ​api/ ​system. ​object], which is not type-safe at compile
time. Let's assume that we are using a non-generic collection of ArrayList; see the
following code snippet for more details:

ArrayList authorArrayList = new ArrayList {"Gaurav Aroraa", "43"};
foreach (string author in authorArrayList)
{
 WriteLine($"Name:{author}");
}

Here, we have an ArrayList with string values. Here, we have the age as a string which
actually should be int. Let's take another ArrayList, which has the age as an int:

ArrayList editorArrayList = new ArrayList { "Vikas Tiwari", 25 };
foreach (int editor in editorArrayList)
{
 WriteLine($"Name:{editor}");
}

In this case, our code compiles, but it will throw an exception of typecast at runtime. So, our
ArrayList does not have compile-time type checking:

https://docs.microsoft.com/en-us/dotnet/api/system.object
https://docs.microsoft.com/en-us/dotnet/api/system.object
https://docs.microsoft.com/en-us/dotnet/api/system.object
https://docs.microsoft.com/en-us/dotnet/api/system.object
https://docs.microsoft.com/en-us/dotnet/api/system.object
https://docs.microsoft.com/en-us/dotnet/api/system.object
https://docs.microsoft.com/en-us/dotnet/api/system.object
https://docs.microsoft.com/en-us/dotnet/api/system.object
https://docs.microsoft.com/en-us/dotnet/api/system.object
https://docs.microsoft.com/en-us/dotnet/api/system.object
https://docs.microsoft.com/en-us/dotnet/api/system.object
https://docs.microsoft.com/en-us/dotnet/api/system.object
https://docs.microsoft.com/en-us/dotnet/api/system.object
https://docs.microsoft.com/en-us/dotnet/api/system.object
https://docs.microsoft.com/en-us/dotnet/api/system.object
https://docs.microsoft.com/en-us/dotnet/api/system.object
https://docs.microsoft.com/en-us/dotnet/api/system.object
https://docs.microsoft.com/en-us/dotnet/api/system.object
https://docs.microsoft.com/en-us/dotnet/api/system.object
https://docs.microsoft.com/en-us/dotnet/api/system.object

Day 06 - Deep Dive with Advanced Concepts

[201]

After digging through the preceding code, we can easily understand why there is no error
at compile time; this is because, ArrayList accepts any type (both value and reference) and
then casts it to a universal base type of .NET, which is nothing but object. But when we run
the code at that time, it requires the actual type, for example, if it is defined as string, then it
should be of the string type at runtime and not of the object type. Hence, we get a runtime
exception.

The activity of casting, boxing, and unboxing of an object in ArrayList
hits the performance, and it depends upon the size of ArrayList and how
large the data that you're iterating through is.

With the help of the preceding code example, we came to know two drawbacks of a non-
generic ArrayList:

It is not compile-time type-safe.1.
Impacts the performance while dealing with large data.2.
ArrayList casts everything to object, so there is no way to stop adding any type3.
of items at compile time. For example, in the preceding code snippet, we can
enter int and/or string type items.

To overcome such issues/drawbacks, we have generic collections, which prevent us from
supplying anything other than the expected type. Consider the following code snippet:

List<string> authorName = new List<string> {"Gaurav Aroraa"};

We have a List, which is defined to get only string type items. So, we can add only string
type values here. Now consider the following:

List<string> authorName = new List<string>();
authorName.Add("Gaurav Aroraa");
authorName.Add(43);

Here, we're trying to supply an item of the int type (remember that we did the same thing
in the case of ArrayList). Now, we get a compile-time error that is related to casting, so a
generic list that is defined to accept only string type items has the capability to stop the
client from entering items of any type other than string. If we hover the mouse on the 43, it
shows the complete error; refer to the following image:

Day 06 - Deep Dive with Advanced Concepts

[202]

In the preceding code snippet, we resolved our one problem by declaring a list of string,
which only allows us to enter string values, so in the case of authors, we can only enter
author names but not author age. You may be thinking that if we need another list of type
int that provides us a way to enter the author's age, that is, if we need a separate list for a
new type, then why should we use generic collections? At the moment, we need only two
items--name and age--so we are creating two different lists of the string and int type on this
node. If we need another item of a different type, then will we be going for another new list.
This is the time when we have things of multiple types, such as string, int, decimal, and so
on. We can create our own types. Consider the following declaration of a generic list:

List<Person> persons = new List<Person>();

We have a List of type Person. This generic list will allow all types of items that are
defined in this type. The following is our Person class:

internal class Person
{
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public int Age { get; set; }
}

Our Person class contains three properties, two of type string and one is of type int. Here,
we have a complete solution for the problems we discussed in the previous section. With
the help of this List, which is of the Person type, we can enter an item of the string and/or
int type. The following code snippet shows this in action:

private static void PersonList()
{
 List<Person> persons = new List<Person>
 {
 new Person
 {

Day 06 - Deep Dive with Advanced Concepts

[203]

 FirstName = "Gaurav",
 LastName = "Aroraa",
 Age = 43
 }
 };
 WriteLine("Person list:");
 foreach (var person in persons)
 {
 WriteLine($"Name:{person.FirstName} {person.LastName}");
 WriteLine($"Age:{person.Age}");
 }
}

After running this code, the following will be our output:

Our List of the Person type will be more performant than ArrayList, as in our generic
class, there is not implicit typecast to object; the items are rather of their expected types.

Discussing constraints
In the previous section, we discussed how a List of the Person type accepts all the items
of their defined types. In our example code, we only use the string and int data types, but in
generics, you can use any data type, including int, float, double, and so on. On the other
hand, there may be scenarios where we want to restrict our use to a few data types or only a
specific data type in generics. To achieve this, there are generic constraints. Consider the
following code snippet:

public class GenericConstraint<T> where T:class
{
 public T ImplementIt(T value)
 {
 return value;
 }
}

Day 06 - Deep Dive with Advanced Concepts

[204]

Here, our class is a generic class. GenericConstraint, of type T, which is nothing but a
reference type; hence, we created this class to accept only the reference type. No value type
will be accepted by this class. This class has an ImplementIt method, which accepts a
parameter of type T and returns a value of type T.

Check https:/ ​/ ​docs. ​microsoft. ​com/ ​en- ​us/​dotnet/ ​csharp/
programming- ​guide/ ​generics/ ​generic- ​type- ​parameters to know more
about Generic Type Parameter Guidelines.

The following declarations are valid as these are of the reference types:

GenericConstraint<string> genericConstraint = new
GenericConstraint<string>();
Person person = genericPersonConstraint.ImplementIt(new Person());

The following is an invalid declaration, as this is of the value type, which is not meant for
the current generic class:

GenericConstraint<int> genericConstraint = new GenericConstraint<int>();

On day two, we learned that int is a value type and not a reference type. The preceding
declaration gives a compile-time error. In Visual Studio, you will see the following error:

So, with the help of generic constraints, we restrict our class to not accept any types other
than reference types.

Constraints are basically an act by which you safeguard your generic class
to prevent the client from using any other type while the class is
instantiated. It results in a compile-time error if the client code tries to
provide a type that is not allowed. The contextual where keyword helps us
in defining constraints.

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/generic-type-parameters
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/generic-type-parameters
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/generic-type-parameters
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/generic-type-parameters
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/generic-type-parameters
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/generic-type-parameters
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/generic-type-parameters
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/generic-type-parameters
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/generic-type-parameters
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/generic-type-parameters
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/generic-type-parameters
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/generic-type-parameters
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/generic-type-parameters
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/generic-type-parameters
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/generic-type-parameters
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/generic-type-parameters
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/generic-type-parameters
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/generic-type-parameters
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/generic-type-parameters
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/generic-type-parameters
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/generic-type-parameters
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/generic-type-parameters
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/generic-type-parameters
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/generic-type-parameters
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/generic-type-parameters
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/generic-type-parameters
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/generic-type-parameters
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/generic-type-parameters

Day 06 - Deep Dive with Advanced Concepts

[205]

In the real world, you can define various type of constraints and these would restrict client
code to create any unwanted situation. Let's discuss these types with examples:

The value type
This constraint is defined with the contextual keyword, where T: struct. With this
constraint, the client's code should contain an argument of the value type; here, any value
except Nullable can be specified.

Example

The following is a code snippet declaring a generic class with a value type constraint:

public class ValueTypeConstraint<T> where T : struct
{
 public T ImplementIt(T value)
 {
 return value;
 }
}

Usage

The following is a code snippet that describes the client code of a generic class declared
with a value type constraint:

private static void ImplementValueTypeGenericClass()
{
 const int age = 43;
 ValueTypeConstraint<int> valueTypeConstraint = new
 ValueTypeConstraint<int>();
 WriteLine($"Age:{valueTypeConstraint.ImplementIt(age)}");

}

The reference type
This constraint is defined with the contextual keyword, where T:class. Using this
constraint, the client code is bound to not provide any types other than reference types.
Valid types are class, interface, delegate, and array.

Day 06 - Deep Dive with Advanced Concepts

[206]

Example

The following code snippet declares a generic class with a reference type constraint:

public class ReferenceTypeConstraint<T> where T:class
{
 public T ImplementIt(T value)
 {
 return value;
 }
}

Usage

The following code snippet describes the client code of a generic class declared with a
reference type constraint:

private static void ImplementReferenceTypeGenericClass()
{
 const string thisIsAuthorName = "Gaurav Aroraa";
 ReferenceTypeConstraint<string> referenceTypeConstraint = new
ReferenceTypeConstraint<string>();
WriteLine($"Name:{referenceTypeConstraint.ImplementIt(thisIsAuthorName)}");

 ReferenceTypeConstraint<Person> referenceTypePersonConstraint = new
ReferenceTypeConstraint<Person>();

 Person person = referenceTypePersonConstraint.ImplementIt(new Person
 {
 FirstName = "Gaurav",
 LastName = "Aroraa",
 Age = 43
 });
 WriteLine($"Name:{person.FirstName}{person.LastName}");
 WriteLine($"Age:{person.Age}");
}

The default constructor
This constraint is defined with the contextual keyword, where T: new(), and it restricts
generic type parameters from defining default constructors. It is also compulsory that an
argument of type T must have a public parameterless constructor. The new() constraint
must be specified in the end, when used with other constraints.

Day 06 - Deep Dive with Advanced Concepts

[207]

Example

The following code snippet declares a generic class with a default constructor constraint:

public class DefaultConstructorConstraint<T> where T : new()
{
 public T ImplementIt(T value)
 {
 return value;
 }
}

Usage

The following code snippet describes the client code of a generic class declared with a
default constructor constraint:

private static void ImplementDefaultConstructorGenericClass()
{
 DefaultConstructorConstraint<ClassWithDefautConstructor>
 constructorConstraint = new
 DefaultConstructorConstraint<ClassWithDefautConstructor>();
 var result = constructorConstraint.ImplementIt(new
 ClassWithDefautConstructor { Name = "Gaurav Aroraa" });
 WriteLine($"Name:{result.Name}");
}

The base class constraint
This constraint is defined with the contextual keyword, where T: <BaseClass>. This
constraint restricts all the client code where the supplied arguments are not of, or not
derived from, the specified base class.

Example

The following code snippet declares a generic class with the base class constraint:

public class BaseClassConstraint<T> where T:Person
{
 public T ImplementIt(T value)
 {
 return value;
 }
}

Day 06 - Deep Dive with Advanced Concepts

[208]

Usage

The following is a code snippet describes the client code of a generic class declared with a
base class constraint:

private static void ImplementBaseClassConstraint()
{
 BaseClassConstraint<Author>baseClassConstraint = new
BaseClassConstraint<Author>();
 var result = baseClassConstraint.ImplementIt(new Author
 {
 FirstName = "Shivprasad",
 LastName = "Koirala",
 Age = 40
 });

 WriteLine($"Name:{result.FirstName} {result.LastName}");
 WriteLine($"Age:{result.Age}");
}

The interface constraint
This constraint is defined with the contextual keyword, where T:<interface name>. The
client code must supply a parameter of the type that implements the specified parameter.
There may be multiple interfaces defined in this constraint.

Example

The following code snippet declares a generic class with an interface constraint:

public class InterfaceConstraint<T>:IDisposable where T : IDisposable
{
 public T ImplementIt(T value)
 {
 return value;
 }

 public void Dispose()
 {
 //dispose stuff goes here
 }
}

Day 06 - Deep Dive with Advanced Concepts

[209]

Usage

The following code snippet describes the client code of a generic class declared with the
interface constraint:

private static void ImplementInterfaceConstraint()
{
 InterfaceConstraint<EntityClass> entityConstraint = new
InterfaceConstraint<EntityClass>();
 var result=entityConstraint.ImplementIt(new EntityClass {Name = "Gaurav
Aroraa"});
 WriteLine($"Name:{result.Name}");
}

In this section, we discussed generics and collections, including the various types of
generics, and we also mentioned why we should use generics.

For more details on generics, visit the official documentation at
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide

/generics/.

Beautifying code using attributes
Attributes provide a way to associate information with code. This information could be as
simple as a message/warning or can contain a complex operation or code itself. These are
declared simply with the help of tags. These also help us to beautify our code by supplying
inbuilt or custom attributes. Consider the following code:

private void PeerOperation()
{
 //other stuffs
 WriteLine("Level1 is completed.");
 //other stuffs
}

In this method, we show an informational message to notify the peer. The preceding
method will be decorated with the help of an attribute. Consider the following code:

[PeerInformation("Level1 is completed.")]
private void PeerOperation()
{
 //other stuffs
}

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/

Day 06 - Deep Dive with Advanced Concepts

[210]

Now, we can see that we just decorated our method with the help of an attribute.

According to the official documentation [https:/ ​/ ​docs. ​microsoft. ​com/​en- ​us/ ​dotnet/
csharp/​tutorials/ ​attributes], attributes provide a way of associating information with
code in a declarative way. They can also provide a reusable element that can be applied to a
variety of targets.

Attributes can be used for the following:

To add meta data information
To add comments, description, compiler instructions, and so on

In the coming sections, we will discuss attributes in detail, with code examples.

Types of attributes
In the previous section, we discussed attributes, which help us to decorate and beautify our
code. In this section, we will discuss the various types of attributes in detail.

AttributeUsage
This is a pre-defined attribute in a framework. This restricts the usage of attributes; in other
words, it tells the type of items on which an attribute can be used, also known as attribute
targets. These can be all or one of the following:

Assembly
Class
Constructor
Delegate
Enum
Event
Field
GenericParameter
Interface
Method
Module

https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/attributes
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/attributes
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/attributes
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/attributes
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/attributes
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/attributes
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/attributes
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/attributes
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/attributes
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/attributes
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/attributes
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/attributes
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/attributes
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/attributes
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/attributes
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/attributes
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/attributes
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/attributes
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/attributes
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/attributes

Day 06 - Deep Dive with Advanced Concepts

[211]

Parameter
Property
ReturnValue
Struct

By default, attributes are of any type of targets, unless you specify explicitly.

Example

The following attribute is created to be used only for a class:

[AttributeUsage(AttributeTargets.Class)]
public class PeerInformationAttribute : Attribute
{
 public PeerInformationAttribute(string information)
 {
 WriteLine(information);
 }
}

In preceding code, we defined attributes for the only use with class. If you try to use this
attribute to other than class, then it will give you a compile-time error. See the following
image, which shows an error for an attribute on method that is actually written solely for a
class:

Obsolete
There may be circumstances when you want to raise a warning for a specific code so that it
is conveyed on the client side. The Obsolete attribute is a predefined attribute that does
the same and warns the calling user that a specific part is obsolete.

Day 06 - Deep Dive with Advanced Concepts

[212]

Example

Consider the following code snippet, which marks a class as Obsolete. You can compile
and run the code even after a warning message because we have not asked this attribute to
throw any error message on usage:

[Obsolete("Do not use this class use 'Person' instead.")]
public class Author:Person
{
 //other stuff goes here
}

The following image shows a warning message saying not to use the Author class, as it is
Obsolete. But the client can still compile and run the code (we did not ask this attribute to
throw error on usage):

The following will throw an error message on usage along with the warning message:

[Obsolete("Do not use this class use 'Person' instead.",true)]
public class Author:Person
{
 //other stuff goes here
}

Day 06 - Deep Dive with Advanced Concepts

[213]

Consider the following image, where the user gets an exception after using the attribute,
which is written to throw an error on usage:

Conditional
The conditional attribute that is a predefined attribute, restricts the execution on the basis of
condition applied to the code that is being processed.

Example

Consider the following code snippet, which restricts the conditional execution of a method
for a defined debug preprocessor (we will discuss preprocessors in detail in the coming
section):

#define Debug
using System.Diagnostics;
using static System.Console;

namespace Day06
{
 internal class Program
 {
 private static void Main(string[] args)
 {
 PersonList();
 ReadLine();
 }

Day 06 - Deep Dive with Advanced Concepts

[214]

 [Conditional("Debug")]
 private static void PersonList()
 {
 WriteLine("Person list:");
 foreach (var person in Person.GetPersonList())
 {
 WriteLine($"Name:{person.FirstName} {person.LastName}");
 WriteLine($"Age:{person.Age}");
 }
 }
 }
}

Remember one thing while defining preprocessor symbols; you define it on the very first
line of the file.

Creating and implementing a custom attribute
In the previous section, we discussed the available or predefined attributes and we noticed
that these are very limited, and in a real-world application, our requirements will demand
more complex attributes. In such a case, we can create our own custom attributes; these
attributes are similar to predefined attributes but with our custom operational code and
target types. All custom attributes should be inherited from the System.Attribute class.

In this section, we will create a simple custom attribute as per the following requirements:

Create an ErrorLogger attribute
This attribute will handle all the available environments, that is, debug,
development, production, and so on
This method should be restricted only for methods
It should show custom or supplied exception/exception messages
By default, it should consider the environment as DEBUG
It should show and throw exceptions if decorated for the development and
DEBUG environment

Prerequisites
To create and run custom attributes, we should have the following prerequisites:

Visual Studio 2017 or later1.
.NET Core 1.1 or later2.

Day 06 - Deep Dive with Advanced Concepts

[215]

Here is the code snippet that creates our expected attribute:

public class ErrorLogger : Attribute
{
 public ErrorLogger(string exception)
 {
 switch (Env)
 {
 case Env.Debug:
 case Env.Dev:
 WriteLine($"{exception}");
 throw new Exception(exception);
 case Env.Prod:
 WriteLine($"{exception}");
 break;
 default:
 WriteLine($"{exception}");
 throw new Exception(exception);
 }
 }

 public Env Env { get; set; }
}

In the preceding code, we simply write to console whatever exceptions are supplied from
the client code. In the case of the DEBUG or Dev environment, the exception is thrown
further.

The following code snippet shows the simple usage of this attribute:

public class MathClass
{
 [ErrorLogger("Add Math opetaion in development", Env =
 Env.Debug)]
 public string Add(int num1, int num2)
 {
 return $"Sum of {num1} and {num2} = {num1 + num2}";
 }

 [ErrorLogger("Substract Math opetaion in development", Env =
 Env.Dev)]
 public string Substract(int num1, int num2)
 {
 return $"Substracrion of {num1} and {num2} = {num1 -
 num2}";
 }

Day 06 - Deep Dive with Advanced Concepts

[216]

 [ErrorLogger("Multiply Math opetaion in development", Env =
 Env.Prod)]
 public string Multiply(int num1, int num2)
 {
 return $"Multiplication of {num1} and {num2} = {num1 -
 num2}";
 }
}

In the preceding code, we have different methods that are marked for different
environments. Out attributes will trigger and write the exceptions supplied for individual
methods.

Leveraging preprocessor directives
As is clear from the name, preprocessor directives are the processes undertaken before the
actual compilation starts. In other words, these preprocessors give instructions to the
compiler to preprocess the information, and this works before the compiler compiles the
code.

Important points
There are the following points to note for preprocessors while you're working with them:

Preprocessor directives are actually conditions for the compiler
Preprocessor directives must start with the # symbol
Preprocessor directives should not be terminated with a semi colon (;) like a
statement terminates
Preprocessors are not used to create macros
Preprocessors should be declared line by line

Preprocessor directives in action
Consider the following preprocessor directive:

#if ... #endif

Day 06 - Deep Dive with Advanced Concepts

[217]

This directive is a conditional directive, code executes whenever this directive is applied to
the code, you can also use #elseif and/or #else directives. As this is a conditional
directive and #if condition in C# is Boolean, these operators can be applied to check
equality (==) and inequality (!=), and between multiple symbols, and (&&), or (||), and not
(!) operators could also be applied to evaluate the condition.

You should define a symbol on the very first line of the file where it is
being applied with the use of #define.

Consider the following code snippet, which lets us know the conditional compilation:

#define DEBUG
#define DEV
using static System.Console;

namespace Day06
{
 public class PreprocessorDirective
 {
 public void ConditionalProcessor() =>
 #if (DEBUG && !DEV)
 WriteLine("Symbol is DEBUG.");
 #elseif (!DEBUG && DEV)
 WriteLine("Symbol is DEV");
 #else
 WriteLine("Symbols are DEBUG & DEV");
 #endif
 }
}

In the preceding code snippet, we have defined two variables for two different compilation
environments, that is, DEBUG and DEV, and now, on the basis of our condition the following
will be the output of the preceding code.

Day 06 - Deep Dive with Advanced Concepts

[218]

#define and #undef

The #define directive basically defines a symbol for us that would be used in a conditional
pre-processor directive.

#define cannot be used to declare constant values.

The following should be kept in mind while declaring a symbol with the use of #define:

It cannot be used to declare constant
It can define a symbol but cannot assign a value to these symbols
Any instructions on the symbol should come after its definition of the symbol in
the file that means #define directive always come before its usage
Scope of the symbol defined or created with the help of #define directive is
within the file where it is declared/defined

Recall the code example we discussed in the #if directive where we defined two symbols.
So, it's very easy to define a symbol like: #define DEBUG.

The #undef directive lets us undefine the earlier defined symbol. This pre-processor should
come before any non-directive statement. Consider the following code:

#define DEBUG
#define DEV
#undef DEBUG
using static System.Console;

namespace Day06
{
 public class PreprocessorDirective
 {
 public void ConditionalProcessor() =>
#if (DEBUG && !DEV)
 WriteLine("Symbol is DEBUG.");
#elif (!DEBUG && DEV)
 WriteLine("Symbol is DEV");
#else
 WriteLine("Symbols are DEBUG & DEV");
#endif
 }
}

Day 06 - Deep Dive with Advanced Concepts

[219]

In the preceding code, we are undefining the DEBUG symbol and the code will produce the
following output:

The #region and #endregion directives

These directives are very helpful while working with long code-based files. Sometimes,
while we are working on a long code base, let's say, an enterprise application, this kind of
application will have 1000 lines of code and these lines will be part of different
functions/methods or business logics. So, for better readability, we can manage these
sections within the region. In a region, we can name and give short descriptions of the code
that the region holds. Let's consider the following image:

Day 06 - Deep Dive with Advanced Concepts

[220]

In the preceding image, the left-hand side portion shows the expanded view of the #region
... #endregion directives, which tells us how we can apply these directives to our long code
base files. The right-hand side of the image shows the collapsed view, and when you hover
the mouse on the collapsed region text, you can see that a rectangular block appears in
Visual Studio, which says what all these regions contain. So, you need not expand the
region to check what code is written under this region.

The #line directive

The #line directive provides a way to modify the actual line number of compilers. You can
also provide the output FileName for errors and warnings, which is optional. This directive
may be useful in automated intermediate steps in the build process. In scenarios where the
line numbers have been removed from the original source code, however you would
require to generate the output based on the original file with numbering.

Additionally, the #line default directive returns the line numbering to its default value,
and it counts a line where it was renumbered earlier.

The #line hidden directive does not affect the filename or line numbers in error reporting.

The #line filename directive profiles a way to name a file you want to appear in the
compiler output. In this, the default value is the actual filename in use; you can provide a
new name in double quotes, and this must be preceded by the line number.

Consider the following code snippet:

 public void LinePreprocessor()
 {
 #line 85 "LineprocessorIsTheFileName"
 WriteLine("This statement is at line#85 and not at
 line# 25");
 #line default
 WriteLine("This statement is at line#29 and not at
 line# 28");
 #line hidden
 WriteLine("This statement is at line#30");
 }
 }

In the preceding code snippet, we marked our line number 85 for the first statement, which
was originally at line number 25.

Day 06 - Deep Dive with Advanced Concepts

[221]

The #warning directive

The #warning directive provides a way to generate a warning in any part of code and
usually work within the conditional directives. Consider the following code snippet:

 public void WarningPreProcessor()
 {
 #if DEBUG
 #warning "This is a DEBUG compilation."
 WriteLine("Environment is DEBUG.");
 #endif
 }
 }

The preceding code will warn at compile time, and the warning message will be what you
provided with the #warning directive:

#error

The #error directive provides a way to generate an error in any part of code. Consider the
following code snippet:

 public void ErrorPreProcessor()
 {
 #if DEV
 #error "This is a DEV compilation."
 WriteLine("Environment is DEV.");
 #endif
 }

Day 06 - Deep Dive with Advanced Concepts

[222]

This will throw an error, and due to this error your code will not be built properly; it fails
the build with the error message that you provided with #error directive. Let's have a look
at the following image:

In this section, we discussed all about preprocessor directives and their usage with code
examples.

For a complete reference of C# preprocessor directives, please refer to the
official documentation:
https:/ ​/​docs. ​microsoft. ​com/ ​en-​us/ ​dotnet/ ​csharp/ ​language-
reference/ ​preprocessor- ​directives/ ​

Getting started with LINQ
LINQ is nothing but an acronym of Language Integrated Query that is part of programming
language. LINQ provides an easy way to write or query data with a specified syntax like we
would use the where clause when trying to query data for some specific criteria. So, we can
say that LINQ is a syntax that is used to query data.

In this section, we will see a simple example to query data. We have Person list and the
following code snippet provides us a various way to query data:

private static void TestLINQ()
{
 var person = from p in Person.GetPersonList()
 where p.Id == 1
 select p;
 foreach (var per in person)
 {
 WriteLine($"Person Id:{per.Id}");
 WriteLine($"Name:{per.FirstName} {per.LastName}");
 WriteLine($"Age:{per.Age}");
 }
}

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/

Day 06 - Deep Dive with Advanced Concepts

[223]

In the preceding code snippet, we are querying List of persons for personId =1. The LINQ
query returns a result of IEnumerable<Person> type which can be easily accessed using
foreach. This code produces the following output:

Complete discussion of LINQ is beyond the scope of this book. For
complete LINQ functionality refer to: https:/ ​/​code. ​msdn. ​microsoft.
com/​101- ​LINQ- ​Samples- ​3fb9811b

Writing unsafe code
In this section, we will discuss introduction to how to write unsafe code using Visual
Studio. Language C# provides a way to write code which compiles and creates the objects
and these objects under the root are managed by the garbage collector [refer to day 01 for
more details on garbage collector]. In simple words, C# is not like C, C++ language which
use concept of function pointer to access references. But there is a situation when it is
necessary to use function-pointers in C# language similar to languages that support
function-pointers like C or C++ but C# language does not support it. To overcome such
situations, we have unsafe code in C# language. There is modifier unsafe which tells that
this code is not controlled by Garbage collector and within that block we can use function
pointers and other unsafe stuffs. To use unsafe code, we first inform compiler to set on
unsafe compilation from Visual Studio 2017 or later just go to project properties and on
Build tab, select the option Allow unsafe code, refer following screenshot:

https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b

Day 06 - Deep Dive with Advanced Concepts

[224]

You would not be able to continue with unsafe code if this option is not selected, please
refer following screenshot:

After setting unsafe compilation, let's write code to swap two numbers using pointers,
consider the following code snippet:

public unsafe void SwapNumbers(int* num1, int* num2)
{
 int tempNum = *num1;
 *num1 = *num2;
 *num2 = tempNum;
}

Day 06 - Deep Dive with Advanced Concepts

[225]

Previous is a very simple swap function which is just swapping two numbers with the help
of pointers. Let's make a call to this function to see the actual results:

private static unsafe void TestUnsafeSwap()
{
 Write("Enter first number:");
 var num1 = Convert.ToInt32(ReadLine());
 Write("Enter second number:");
 var num2 = Convert.ToInt32(ReadLine());
 WriteLine("Before calling swap function:");
 WriteLine($"Number1:{num1}, Number2:{num2}");
 //call swap
 new UnsafeSwap().SwapNumbers(&num1, &num2);
 WriteLine("After calling swap function:");
 WriteLine($"Number1:{num1}, Number2:{num2}");
}

In the preceding code snippet, we are taking input of two numbers and then showing the
results before and after swaps, this produces the following output:

In this section, we have discussed how to deal with unsafe code.

For more details on unsafe code, refer to official documentations of
language specifications: https:/ ​/​docs. ​microsoft. ​com/ ​en- ​us/​dotnet/
csharp/ ​language- ​reference/ ​language- ​specification/ ​unsafe- ​code

Writing asynchronous code
Before we discuss the code in async way, lets first discuss our normal code that is nothing
but a synchronous code, let's consider following code snippet:

public class FilePolling
{
 public void PoleAFile(string fileName)
 {

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/unsafe-code
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/unsafe-code
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/unsafe-code
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/unsafe-code
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/unsafe-code
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/unsafe-code
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/unsafe-code
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/unsafe-code
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/unsafe-code
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/unsafe-code
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/unsafe-code
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/unsafe-code
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/unsafe-code
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/unsafe-code
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/unsafe-code
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/unsafe-code
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/unsafe-code
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/unsafe-code
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/unsafe-code
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/unsafe-code
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/unsafe-code
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/unsafe-code
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/unsafe-code
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/unsafe-code
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/unsafe-code
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/unsafe-code
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/unsafe-code
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/unsafe-code

Day 06 - Deep Dive with Advanced Concepts

[226]

 Console.Write($"This is polling file:
 {fileName}");
 //file polling stuff goes here
 }
}

The preceding code snippet is short and sweet. It tells us it is polling to a specific file. Here
system has to wait to complete the operation of poling a file before it start next. This is what
synchronous code is. Now, consider a scenario where we need not wait to complete the
operation of this function to start another operation or function. To meet such scenarios, we
have asynchronous coding, this is possible with the keyword, async.

Consider following code:

public async void PoleAFileAsync(string fileName)
{
 Console.Write($"This is polling file: {fileName}");
 //file polling async stuff goes here
}

Just with the help of the async keyword our code is able to make asynchronous calls.

In the view of previous code we can say that asynchronous programming is one that let not
wait client code to execute another function or operation during any async operation. In
simple word, we can say that asynchronous code can't hold another operation that need to
be called.

In this chapter, we discussed asynchronous coding. A complete discussion on this topic is
beyond the scope of our book. For complete details refer to official documentation: https:/
/​docs.​microsoft.​com/ ​en- ​us/ ​dotnet/ ​csharp/ ​async

Hands-on exercises
Define generic classes by creating generic code of StringCalculator: https:/ ​/1.
github.​com/ ​garora/ ​TDD- ​Katas/ ​tree/ ​develop/ ​Src/ ​cs/ ​StringCalculator

Create a generic and non-generic collection and test which one is better as per2.
performance.
We have discussed code snippets in the section-Why one should use Generics? that3.
tells about run-time compilation exceptions. In this regard, why should we not
use the same code in the following way?

internal class Program
{

https://docs.microsoft.com/en-us/dotnet/csharp/async
https://docs.microsoft.com/en-us/dotnet/csharp/async
https://docs.microsoft.com/en-us/dotnet/csharp/async
https://docs.microsoft.com/en-us/dotnet/csharp/async
https://docs.microsoft.com/en-us/dotnet/csharp/async
https://docs.microsoft.com/en-us/dotnet/csharp/async
https://docs.microsoft.com/en-us/dotnet/csharp/async
https://docs.microsoft.com/en-us/dotnet/csharp/async
https://docs.microsoft.com/en-us/dotnet/csharp/async
https://docs.microsoft.com/en-us/dotnet/csharp/async
https://docs.microsoft.com/en-us/dotnet/csharp/async
https://docs.microsoft.com/en-us/dotnet/csharp/async
https://docs.microsoft.com/en-us/dotnet/csharp/async
https://docs.microsoft.com/en-us/dotnet/csharp/async
https://docs.microsoft.com/en-us/dotnet/csharp/async
https://docs.microsoft.com/en-us/dotnet/csharp/async
https://docs.microsoft.com/en-us/dotnet/csharp/async
https://docs.microsoft.com/en-us/dotnet/csharp/async
https://github.com/garora/TDD-Katas/tree/develop/Src/cs/StringCalculator
https://github.com/garora/TDD-Katas/tree/develop/Src/cs/StringCalculator
https://github.com/garora/TDD-Katas/tree/develop/Src/cs/StringCalculator
https://github.com/garora/TDD-Katas/tree/develop/Src/cs/StringCalculator
https://github.com/garora/TDD-Katas/tree/develop/Src/cs/StringCalculator
https://github.com/garora/TDD-Katas/tree/develop/Src/cs/StringCalculator
https://github.com/garora/TDD-Katas/tree/develop/Src/cs/StringCalculator
https://github.com/garora/TDD-Katas/tree/develop/Src/cs/StringCalculator
https://github.com/garora/TDD-Katas/tree/develop/Src/cs/StringCalculator
https://github.com/garora/TDD-Katas/tree/develop/Src/cs/StringCalculator
https://github.com/garora/TDD-Katas/tree/develop/Src/cs/StringCalculator
https://github.com/garora/TDD-Katas/tree/develop/Src/cs/StringCalculator
https://github.com/garora/TDD-Katas/tree/develop/Src/cs/StringCalculator
https://github.com/garora/TDD-Katas/tree/develop/Src/cs/StringCalculator
https://github.com/garora/TDD-Katas/tree/develop/Src/cs/StringCalculator
https://github.com/garora/TDD-Katas/tree/develop/Src/cs/StringCalculator
https://github.com/garora/TDD-Katas/tree/develop/Src/cs/StringCalculator
https://github.com/garora/TDD-Katas/tree/develop/Src/cs/StringCalculator
https://github.com/garora/TDD-Katas/tree/develop/Src/cs/StringCalculator
https://github.com/garora/TDD-Katas/tree/develop/Src/cs/StringCalculator
https://github.com/garora/TDD-Katas/tree/develop/Src/cs/StringCalculator
https://github.com/garora/TDD-Katas/tree/develop/Src/cs/StringCalculator

Day 06 - Deep Dive with Advanced Concepts

[227]

 private static void Main(string[] args)
{
 //No exception at compile-time or run-time
 ArrayList authorEditorArrayList = new ArrayList {
 "Gaurav Arora", 43, "Vikas Tiwari", 25 };
 foreach (var authorEditor in authorEditorArrayList)
 {
 WriteLine($"{authorEditor}");
 }
}
}

What is the use of the default keyword in generic code, elaborate with the help1.
of a real-world example.
Write simple code by using all 3-types of predefined attributes.2.
What is the default restriction type for an attribute? Write a program to showcase3.
all restriction types.
Create a custom attribute with name - LogFailuresAttribute that log all exceptions4.
in a text file.
Why pre-processor directive #define cannot be used to declare constant values?5.
Write a program to create a List of Authors and apply LINQ functionality on it.6.
Write a program to sort an array7.
Write a complete program to write a sync and async methods to write a file.8.

Revisiting Day 6
Today, we discussed advanced concepts such as generics, attributes, preprocessors, LINQ,
unsafe code, and asynchronous programming.

Our day started with generics, where you learned about generic classes with the help of
code snippets. Then, we dived into attributes and learned how to decorate our C# code with
predefined attributes. We have created one custom attribute and used it in our code
example. We discussed preprocessor directives with complete examples and learned the
usage of these directives in our coding. Other concepts discussed are LINQ, unsafe code,
and asynchronous programming.

Tomorrow, that is, day seven will be the concluding day of our seven-day learning series.
We will cover OOP concepts and their implementation in the C# language.

7
Day 07 - Understanding Object-
Oriented Programming with C#

Today we are on day seven of our seven-day learning series. Yesterday (day six), we went
through a few advanced topics and we discussed attributes, generics, and LINQ. Today, we
will start learning object-oriented programming (OOP) using C#.

This will be a practical approach to OOP, while covering all the aspects. You will benefit
even without having any basic knowledge of OOP and move on to confidently practicing
this easily in the workplace.

We will be covering these topics:

Introduction to OOP
Discussing object relationships
Encapsulation
Abstraction
Inheritance
Polymorphism

Introduction to OOP
OOP is one of the programming paradigms that is purely based on objects. These objects
contain data (please refer to day sevenfor more details).

Day 07 - Understanding Object-Oriented Programming with C#

[229]

When we do the classification of programming languages it is called
programming paradigm. For more information refer to https:/ ​/​en.
wikipedia. ​org/ ​wiki/ ​Programming_ ​paradigm.

OOP has come into consideration to overcome the limitations of earlier programming
approaches (consider the procedural language approach).

Generally, I define OOP as follows:

A modern programming language in which we use objects as building blocks to develop applications.

There are a lot of examples of objects in our surroundings and in the real world, we have
various aspects that are the representation of objects. Let us go back to our programming
world and think about a program that is defined as follows:

A program is a list of instructions that instructs the language compiler on what to do.

To understand OOP more closely, we should know about earlier programming approaches,
mainly procedural programming, structured programming, and so on.

Structured programming: This is a term coined by Edsger W. Dijkstra in 1966.
Structured programming is a programming paradigm that solves a problem to
handle 1000 lines of code and divides these into small parts. These small parts are
mostly called subroutine, block structures, for and while loops, and so on.
Known languages that use structured programming techniques are ALGOL,
Pascal, PL/I, and so on.
Procedural programming: A paradigm derived from structured programming
and simply based on how we make a call (known as a procedural call). Known
languages that use procedural programming techniques are COBOL, Pascal, C. A
recent example of the Go programming language was published in 2009.

The main problem with these two approaches is that programs are not well manageable
once they grow. Programs with more complex and large code bases make these two
approaches strained. In short, the maintainability of the code is tedious with the use of these
two approaches. To overcome such problems now, we have OOP, which has the following
features:

Inheritance
Encapsulation
Polymorphism
Abstraction

https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wikipedia.org/wiki/Programming_paradigm

Day 07 - Understanding Object-Oriented Programming with C#

[230]

Discussing Object relations
Before we start our discussion on OOP, first we should understand relationships. In the real
world, objects have relationships between them and hierarchies as well. There are the
following types of relationships in object-oriented programming:

Association: Association represents a relationship between objects in a manner
that all objects have their own life cycle. In association, there is no owner of these
objects. For example, a person in a meeting. Here, the person and the meeting are
independent; there is no parent of them. A person can have multiple meetings
and a meeting can combine multiple persons. The meeting and persons are both
independently initialized and destroyed.

Aggregation and composition are both types of association.

Aggregation: Aggregation is a specialized form of association. Similar to
association, objects have their own life cycle in aggregations, but it involves
ownership that means a child object cannot belong to another parent object.
Aggregation is a one-way relationship where the lives of objects are independent
from each other. For example, the child and parent relationship is an aggregation,
because every child has parent but it's not necessary that every parent has child.
Composition: Composition is a relationship of death that represents the
relationship between two objects and one object (child) depends on another object
(parent). If the parent object is deleted, all its children automatically get deleted.
For example, a house and a room. One house has multiple rooms. But a single
room cannot belong to multiple houses. If we demolished the house, the room
would automatically delete.

In the coming sections, we will discuss all features of OOP in detail. Also, we will
understand implementing these features using C#.

Day 07 - Understanding Object-Oriented Programming with C#

[231]

Inheritance
Inheritance is one of the most important features/concepts of OOP. It is self-explanatory in
name; inheritance inherits features from a class. In simple words, inheritance is an activity
performed at compile-time as instructed with the help of the syntax. The class that inherits
another class is known as the child or derived class, and the class which is being inherited is
known as the base or parent class. Here, derived classes inherit all the features of base
classes either to implement or to override.

In the coming sections, we will discuss inheritance in detail with code examples using C#.

Understanding inheritance
Inheritance as a feature of OOP helps you to define a child class. This child class inherits the
behavior of the parent or base class.

Inheriting a class means reusing the class. In C#, inheritance is
symbolically defined using the colon (:) sign.

The modifier (refer to Chapter 2, Day 02 - Getting Started with C#) tells us what the scope of
the reuse of the base class for derived classes is. For instance, consider that class B inherits
class A. Here, class B contains all the features of class A including its own features. Refer the
following diagram:

Day 07 - Understanding Object-Oriented Programming with C#

[232]

In the preceding figure, the derived class (that is, B) inherits all the features by ignoring
modifiers. Features are inherited whether these are public or private. These modifiers come
in to consideration when these features are going to be implemented. At the time of
implementation only public features are considered. So, here, public features, that is, A, B,
and C will be implemented but private features, that is, B, will not be implemented.

Types of inheritance
Up until this point, we have got the idea about inheritance. Now, it's time to discuss
inheritance types; inheritance is of the following types:

Single inheritance:

This is a widely used type of inheritance. Single inheritance is when a class
inherits another class. A class that inherits another class is called a child class
and the class which is being inherited is called a parent or base class. In the
child class, the class inherits features from one parent class only.

C# only supports single inheritance.

You can inherit classes hierarchically (as we will see in the following section),
but that is a single inheritance in nature for a derived class. Refer the
following diagram:

Day 07 - Understanding Object-Oriented Programming with C#

[233]

The preceding diagram is a representation of a single inheritance that shows
Class B (inherited class) inheriting Class A (base class). Class B can reuse all
features that is, A, B, and C, including its own feature, that is, D. Visibility or
reusability of members in inheritance depends on the protection levels (this
will be discussed in the coming section, Member visibility in inheritance).

Multiple inheritance:

Multiple inheritance happens when a derived class inherits multiple base
classes. Languages such as C++ support multiple inheritance. C# does not
support multiple inheritance, but we can achieve multiple inheritance with
the help of interfaces. If you are curious to know that why C# does not
support multiple inheritance, refer to this official link at https:/ ​/ ​blogs.
msdn. ​microsoft. ​com/ ​csharpfaq/ ​2004/ ​03/ ​07/​why- ​doesnt- ​c- ​support-
multiple- ​inheritance/ ​. Refer to the following diagram:

The preceding diagram is a representation of multiple inheritance (not
possible in C# without the help of interfaces), which shows that Class C
(derived class) inherits from two base classes (A and B). In multiple
inheritance, the derived Class C will have all the features of both Class A and
Class B.

https://blogs.msdn.microsoft.com/csharpfaq/2004/03/07/why-doesnt-c-support-multiple-inheritance/
https://blogs.msdn.microsoft.com/csharpfaq/2004/03/07/why-doesnt-c-support-multiple-inheritance/
https://blogs.msdn.microsoft.com/csharpfaq/2004/03/07/why-doesnt-c-support-multiple-inheritance/
https://blogs.msdn.microsoft.com/csharpfaq/2004/03/07/why-doesnt-c-support-multiple-inheritance/
https://blogs.msdn.microsoft.com/csharpfaq/2004/03/07/why-doesnt-c-support-multiple-inheritance/
https://blogs.msdn.microsoft.com/csharpfaq/2004/03/07/why-doesnt-c-support-multiple-inheritance/
https://blogs.msdn.microsoft.com/csharpfaq/2004/03/07/why-doesnt-c-support-multiple-inheritance/
https://blogs.msdn.microsoft.com/csharpfaq/2004/03/07/why-doesnt-c-support-multiple-inheritance/
https://blogs.msdn.microsoft.com/csharpfaq/2004/03/07/why-doesnt-c-support-multiple-inheritance/
https://blogs.msdn.microsoft.com/csharpfaq/2004/03/07/why-doesnt-c-support-multiple-inheritance/
https://blogs.msdn.microsoft.com/csharpfaq/2004/03/07/why-doesnt-c-support-multiple-inheritance/
https://blogs.msdn.microsoft.com/csharpfaq/2004/03/07/why-doesnt-c-support-multiple-inheritance/
https://blogs.msdn.microsoft.com/csharpfaq/2004/03/07/why-doesnt-c-support-multiple-inheritance/
https://blogs.msdn.microsoft.com/csharpfaq/2004/03/07/why-doesnt-c-support-multiple-inheritance/
https://blogs.msdn.microsoft.com/csharpfaq/2004/03/07/why-doesnt-c-support-multiple-inheritance/
https://blogs.msdn.microsoft.com/csharpfaq/2004/03/07/why-doesnt-c-support-multiple-inheritance/
https://blogs.msdn.microsoft.com/csharpfaq/2004/03/07/why-doesnt-c-support-multiple-inheritance/
https://blogs.msdn.microsoft.com/csharpfaq/2004/03/07/why-doesnt-c-support-multiple-inheritance/
https://blogs.msdn.microsoft.com/csharpfaq/2004/03/07/why-doesnt-c-support-multiple-inheritance/
https://blogs.msdn.microsoft.com/csharpfaq/2004/03/07/why-doesnt-c-support-multiple-inheritance/
https://blogs.msdn.microsoft.com/csharpfaq/2004/03/07/why-doesnt-c-support-multiple-inheritance/
https://blogs.msdn.microsoft.com/csharpfaq/2004/03/07/why-doesnt-c-support-multiple-inheritance/
https://blogs.msdn.microsoft.com/csharpfaq/2004/03/07/why-doesnt-c-support-multiple-inheritance/
https://blogs.msdn.microsoft.com/csharpfaq/2004/03/07/why-doesnt-c-support-multiple-inheritance/
https://blogs.msdn.microsoft.com/csharpfaq/2004/03/07/why-doesnt-c-support-multiple-inheritance/
https://blogs.msdn.microsoft.com/csharpfaq/2004/03/07/why-doesnt-c-support-multiple-inheritance/
https://blogs.msdn.microsoft.com/csharpfaq/2004/03/07/why-doesnt-c-support-multiple-inheritance/
https://blogs.msdn.microsoft.com/csharpfaq/2004/03/07/why-doesnt-c-support-multiple-inheritance/
https://blogs.msdn.microsoft.com/csharpfaq/2004/03/07/why-doesnt-c-support-multiple-inheritance/
https://blogs.msdn.microsoft.com/csharpfaq/2004/03/07/why-doesnt-c-support-multiple-inheritance/

Day 07 - Understanding Object-Oriented Programming with C#

[234]

Hierarchical inheritance:

Hierarchical inheritance happens when more than one class inherits from one
class. Refer to the following diagram:

In the preceding diagram, Class B (derived class) and Class C (derived class)
inherit from Class A (base class). With the help of hierarchical inheritance,
Class B can use all the features of Class A. Similarly, Class C can also use all
the features of Class A.

Multilevel inheritance:

When a class is derived from a class that is already a derived class, it is called
multilevel inheritance.

In multi-level inheritance, the recently derived class owns the features of
all the earlier derived classes.

Day 07 - Understanding Object-Oriented Programming with C#

[235]

In this, a derived class can have its parent and a parent of the parent class.
Refer to the following diagram:

The preceding diagram represents multilevel inheritance and shows that
Class C (recently derived class) can reuse all the features of Class B and Class
A.

Hybrid inheritance:

Hybrid inheritance is a combination of more than one inheritance.

C# does not support hybrid inheritance.

Combination of multiple and multilevel inheritance is a hierarchical
inheritance, where a parent class is a derived class and a recently derived
class inherits multiple parent classes. There can be more combinations. Refer
to the following diagram:

Day 07 - Understanding Object-Oriented Programming with C#

[236]

The preceding image, representing hybrid inheritance, shows the
combination hierarchical and multiple inheritance. You can see that Class A is
a parent class and all the other classes are derived from Class A, directly or
indirectly. Our derived Class E can reuse all the features of Class A, B, C, and
D.

Implicit inheritance:

All the types in .NET implicitly inherit from system.object or its derived
classes. For more information on implicit inheritance, refer to https:/ ​/​docs.
microsoft. ​com/ ​en- ​us/ ​dotnet/ ​csharp/ ​tutorials/ ​inheritance#implicit-
inheritance.

https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/inheritance#implicit-inheritance
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/inheritance#implicit-inheritance
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/inheritance#implicit-inheritance
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/inheritance#implicit-inheritance
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/inheritance#implicit-inheritance
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/inheritance#implicit-inheritance
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/inheritance#implicit-inheritance
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/inheritance#implicit-inheritance
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/inheritance#implicit-inheritance
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/inheritance#implicit-inheritance
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/inheritance#implicit-inheritance
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/inheritance#implicit-inheritance
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/inheritance#implicit-inheritance
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/inheritance#implicit-inheritance
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/inheritance#implicit-inheritance
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/inheritance#implicit-inheritance
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/inheritance#implicit-inheritance
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/inheritance#implicit-inheritance
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/inheritance#implicit-inheritance
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/inheritance#implicit-inheritance
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/inheritance#implicit-inheritance

Day 07 - Understanding Object-Oriented Programming with C#

[237]

Member visibility in inheritance
As we discussed earlier, in inheritance, derived classes can reuse the functionality of the
parent class and use or modify the members of its parent class. But these members can be
reused or modified as per their access modifier or visibility (for more details refer to
Chapter 4, Day 04 - Discussing C# Class Members).

In this section, we will briefly discuss member visibility in inheritance. In any type of
inheritance (that is possible in C# language) the following members cannot be inherited by
base classes:

Static constructors: A static constructor is one that initializes the static data (refer
to the Modifier section of Chapter 4, Day 04: Discussing C# Class Members). The
importance of static constructors is that these are called before the creation of the
first instance of a class or any other static members called or referred to in some
operations. Being a static data initializer, a static constructor cannot be inherited
by a derived class.
Instance constructor: It is not a static constructor; whenever you create a new
instance of a class, a constructor is called, which is the instance class. A class can
have multiple constructors. As the instance constructor is used to create an
instance of a class, it is not inherited by the derived class. For more information
on constructors, refer to https:/ ​/​docs. ​microsoft. ​com/ ​en- ​us/​dotnet/ ​csharp/
programming- ​guide/ ​classes- ​and-​structs/ ​constructors.
Finalizers: These are just destructors of classes. These are used or called by
garbage collectors at runtime to destroy the instances of a class. As finalizers are
called only once and are per class, these cannot be inherited by a derived class.
For more information on destructors or finalizers, refer to https:/ ​/​docs.
microsoft. ​com/ ​en- ​us/ ​dotnet/ ​csharp/ ​programming- ​guide/ ​classes- ​and-
structs/ ​destructors.

Derived classes can reuse or inherit all the members of the base class, but their usage or
visibility depends upon their access modifiers (refer to Chapter 4, Day 04 - Discussing C#
Class Members). Different visibility of these members depends upon the following
accessibility modifiers:

Private: If a member is private, the visibility of a private member is restricted
to its derived class; private members are available in derived classes if the
derived class nests to its base class.

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/constructors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/constructors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/constructors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/constructors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/constructors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/constructors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/constructors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/constructors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/constructors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/constructors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/constructors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/constructors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/constructors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/constructors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/constructors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/constructors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/constructors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/constructors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/constructors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/constructors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/constructors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/constructors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/constructors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/constructors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/constructors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/constructors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/constructors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/constructors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/destructors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/destructors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/destructors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/destructors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/destructors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/destructors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/destructors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/destructors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/destructors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/destructors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/destructors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/destructors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/destructors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/destructors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/destructors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/destructors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/destructors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/destructors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/destructors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/destructors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/destructors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/destructors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/destructors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/destructors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/destructors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/destructors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/destructors

Day 07 - Understanding Object-Oriented Programming with C#

[238]

Consider the following code snippet:

public class BaseClass
{
 private const string AuthorName = "Gaurav Aroraa";
 public class DeriveClass: BaseClass
 {
 public void Display()
 {
 Write("This is from inherited Private member:");
 WriteLine($"{nameof(AuthorName)}'{AuthorName}'");
 ReadLine();
 }
 }
}

In the preceding code snippet, BaseClass is to have one private member,
AuthorName, and this will be available in DeriveClass, as DeriveClass is
a nested class of BaseClass. You can also see this in compile time while
moving the cursor over to the usage of the private AuthorName member. See
the following screenshot:

The preceding image shows the visibility of a private method for a derived
class. The private method is visible in the derived class if the class is nested
within its base class.

Day 07 - Understanding Object-Oriented Programming with C#

[239]

If the class is not nested within its parent/base class, then you can see the
following compile-time exception:

In the preceding screenshot, we have ChildClass, which inherits from
BaseClass. Here, we cannot use private members of BaseClass as
ChildClass is not nested within BaseClass.

Protected: If a member is a protected modifier, it is only visible to the derived
class. These members will not be available or visible while you're using the using
the instance of a base class, because these are defined as protected.

The following screenshot depicts how a protected member can be
accessible/visible using the base class:

Day 07 - Understanding Object-Oriented Programming with C#

[240]

In the preceding screenshot, the protected member, EditorName is visible in
ChildClass because it inherits BaseClass.

The following screenshot shows that the protected members are not
accessible using the instance of BaseClass in ChildClass. If you try to do
so, you will get a compile-time error:

Internal: Members with internal modifiers are only available in the derived
classes of the same assembly as of the base class. These members can't be
available for derived classes that belong to other assemblies.

Consider the following code-snippet:

namespace Day07
{
 public class MemberVisibility
 {
 private void InternalMemberExample()
 {
 var childClass = new Lib.ChildClass();
 WriteLine("Calling from derived class that
 belongs to same assembly of BaseClass");
 childClass.Display();
 }
 }
}

The preceding code shows the visibility of an internal member. Here,
ChildClass belongs to the Lib assembly, which is where BaseClass exists.

Day 07 - Understanding Object-Oriented Programming with C#

[241]

On the other hand, if BaseClass exists in an assembly other than Lib, then
internal members will not accessible; see the following screenshot:

The preceding screenshot shows a compile-time error that tells that the
internal members are inaccessible, as they are not available in the same
assembly.

Public: Public members are available or visible in derived classes and can be used
further.

Consider the following code-snippet:

public class ChilClassYounger : ChildClass
{
 private string _copyEditor = "Diwakar Shukla";
 public new void Display()
 {
 WriteLine($"This is from ChildClassYounger: copy
 editor is '{_copyEditor}'");
 WriteLine("This is from ChildClass:");
 base.Display();
 }
}

In the preceding code snippet, ChildClassYoung has a Display() method
that displays the console output. ChildClass also has a public Display()
method that also displays the console output. In our derived class, we can
reuse the Display() method of ChildClass because it is declared as public.
After running the previous code, it will give the following output:

Day 07 - Understanding Object-Oriented Programming with C#

[242]

In the previous code, you should notice that we added a new keyword with the Display()
method of the ChildClassYounger class. This is because we have a method with the same
name in the parent class (that is, ChildClass). If we don't add the new keyword, we'll see a
compile-time warning, as shown in the following screenshot:

By applying the new keyword, you hide the ChildClass.Display() member that is
inherited from ChildClass. In C#, this concept is called method hiding.

Implementing inheritance
In the previous section, you learned about inheritance in detail and went through its
various types. You also learned inherited member's visibility. In this section, we will
implement inheritance.

Inheritance is representation of an IS-A relation, which suggests that Author IS-A Person
and Person IS-A Human, so Author IS-A Human. Let's understand this in a code example:

public class Person
{
 public string FirstName { get; set; } = "Gaurav";
 public string LastName { get; set; } = "Aroraa";
 public int Age { get; set; } = 43;
 public string Name => $"{FirstName} {LastName}";
 public virtual void Detail()

Day 07 - Understanding Object-Oriented Programming with C#

[243]

 {
 WriteLine("Person's Detail:");
 WriteLine($"Name: {Name}");
 WriteLine($"Age: {Age}");
 ReadLine();
 }
}
public class Author:Person
{
 public override void Detail()
 {
 WriteLine("Author's detail:");
 WriteLine($"Name: {Name}");
 WriteLine($"Age: {Age}");
 ReadLine();
 }
}
public class Editor : Person
{
 public override void Detail()
 {
 WriteLine("Editor's detail:");
 WriteLine($"Name: {Name}");
 WriteLine($"Age: {Age}");
 ReadLine();
 }
}
public class Reviewer : Person
{
 public override void Detail()
 {
 WriteLine("Reviewer's detail:");
 WriteLine($"Name: {Name}");
 WriteLine($"Age: {Age}");
 ReadLine();
 }
}

In the preceding code, we have a base class, Person and three derived classes, namely
Author, Editor, and Reviewer. This shows single inheritance. The following is the
implementation of the previous code:

private static void InheritanceImplementationExample()
{
 WriteLine("Inheritance implementation");
 WriteLine();
 var person = new Person();
 WriteLine("Parent class Person:");

Day 07 - Understanding Object-Oriented Programming with C#

[244]

 person.Detail();
 var author = new Author();
 WriteLine("Derive class Author:");
 Write("First Name:");
 author.FirstName = ReadLine();
 Write("Last Name:");
 author.LastName = ReadLine();
 Write("Age:");
 author.Age = Convert.ToInt32(ReadLine());
 author.Detail();
 //code removed
}

In the preceding code, we instantiated a single class and called details; each class inherits
the Person class and, hence, all its members. This produces the following output:

Day 07 - Understanding Object-Oriented Programming with C#

[245]

Implementing multiple inheritance in C#
We have already discussed in the previous section that C# does not support multiple
inheritance. But we can achieve multiple inheritance with the help of interfaces (refer to
Chapter 2, Day 02 – Getting Started with C#). In this section, we will implement multiple
inheritance using C#.

Let's consider the code snippet of the previous section, which implements single
inheritance. Let's rewrite the code by implementing interfaces.

Interfaces represent Has-A/Can-Do relationship, which indicates that
Publisher Has-A Author and Author Has-A Book. In C#, you can
assign an instance of a class to any variable that is of the type of the
interface or the base class. In view of OOP, this concept is referred to as
polymorphism (refer to the Polymorphism section for more details).

First of all, let's create an interface:

public interface IBook
{
 string Title { get; set; }
 string Isbn { get; set; }
 bool Ispublished { get; set; }
 void Detail();
}

In the preceding code snippet, we created an IBook interface, which is related to book
details. This interface is intended to collect book details, such as Title, ISBN, and whether
the book is published. It has a method that provides the complete book details.

Now, let's implement the IBook interface to derive the Author class, which inherits the
Person class:

public class Author:Person, IBook
{
 public string Title { get; set; }
 public string Isbn { get; set; }
 public bool Ispublished { get; set; }
 public override void Detail()
 {
 WriteLine("Author's detail:");
 WriteLine($"Name: {Name}");
 WriteLine($"Age: {Age}");
 ReadLine();
 }
 void IBook.Detail()

Day 07 - Understanding Object-Oriented Programming with C#

[246]

 {
 WriteLine("Book details:");
 WriteLine($"Author Name: {Name}");
 WriteLine($"Author Age: {Age}");
 WriteLine($"Title: {Title}");
 WriteLine($"Isbn: {Isbn}");
 WriteLine($"Published: {(Ispublished ? "Yes" :
 "No")}");
 ReadLine();
 }
}

In the preceding code snippet, we implemented multiple inheritance with the use of the
IBook interface. Our derived class Author inherits the Person base class and implements
the IBook interface. In the preceding code, a notable point is that both the class and
interface have the Detail() method. Now, it depends on which method we want to
modify or which method we want to reuse. If we try to modify the Detail() method of the
Person class, then we need to override or hide it (using the new keyword). On the other
hand, if we want to use the interface's method, we need to explicitly call the
IBook.Detail() method. When you call interface methods explicitly, modifiers are not
required; hence, there is no need to put a public modifier here. This method implicitly has
public visibility:

//multiple Inheritance
WriteLine("Book details:");
Write("Title:");
author.Title = ReadLine();
Write("Isbn:");
author.Isbn = ReadLine();
Write("Published (Y/N):");
author.Ispublished = ReadLine() == "Y";((IBook)author).Detail(); //
we need to cast as both Person class and IBook has same named methods

Day 07 - Understanding Object-Oriented Programming with C#

[247]

The preceding code snippet calls the interface method; note how we are casting the instance
of our Author class with IBook:

The preceding image shows the output of the implemented code using interfaces. All the
members of the interface are accessible to the child class; there is no need for special
implementation when you are instantiating a child class. The instance of a child class is able
to access all the visible members. The important point in the preceding implementation is in
the ((IBook)author).Detail(); statement, where we explicitly cast the instance of child
class to the interface to get the implementation of the interface member. By default, it
provides the implementation of a class member, so we need explicitly tell the compiler that
we need an interface method.

Day 07 - Understanding Object-Oriented Programming with C#

[248]

Abstraction
Abstraction is the process where relevant data is shown by hiding irrelevant or unnecessary
information. For example, if you purchase a mobile phone, you'd not be interested in the
process of how your message is delivered or how your call connects another number, but
you'd be interested to know that whenever you press the call button on your phone, it
should connect your call. In this example, we hide those features that do not interest the
user and provide those features that interest the user. This process is called abstraction.

Implementing abstraction
In C#, abstraction can be implemented with the use of:

Abstract class
Abstract class is half-defined that means it provides a way to override members to its child
classes. We should use base classes in the project where we need have a need same member
to all its child classes with own implementations or want to override. For an example if we
have an abstract class Car with an abstract method color and have child classes HondCar,
FordCar, MarutiCar etc. in this case all child classes would have color member but with
different implementation because color method would be overridden in the child classes
with their own implementations. The point to be noted here - abstract classes represent IS-A
relation.

You can also revisit our discussion of abstract class during Day04 section
'abstract' and code-examples to understand the implementation.

Features of abstract class
In previous section we learned about abstract classes, here are the few features of abstract
class:

Abstract class can't be initialized that means, you cannot create an object of
abstract class.
Abstract class is meant to act as a base class so, other classes can inherit it.

Day 07 - Understanding Object-Oriented Programming with C#

[249]

If you declared an abstract class then by design it must be inherited by other
classes.
An abstract class can have both concrete or abstract methods. Abstrcat methods
should be implemented in the child class that inherited abstract class.

Interface
An interface does not contain functionality or concrete members. You can call this is a
contract for the class or structure that will implement to define the signatures of the
functionality. With the use of interface, you make sure that whenever a class or struct
implement it that class or struct is going to use the contract of the interface. For an instance
if ICalculator interface has method Add() that means whenever a class or structure
implement this interface it provides a specific contractual functionality that is addition.

For more information on interface, refer: https:/ ​/​docs. ​microsoft. ​com/
en-​us/ ​dotnet/ ​csharp/ ​programming- ​guide/ ​interfaces/ ​index

Interface can only have these members:

Methods
Properties
Indexers
Events

Features of interface
Followings are the main features of interfaces

Interface is internal by default
All member of interface is public by default and there is no need to explicitly
apply public modifier to the members
Similarly, to abstract class, interface also cannot be instantiated. They can only
implement and the class or structure that implement it should implement all the
members.
Interface cannot contain any concrete method
An interface can be implemented by another interface, a class or struct.
A class or struct can implement multiple interfaces.

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interfaces/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interfaces/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interfaces/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interfaces/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interfaces/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interfaces/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interfaces/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interfaces/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interfaces/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interfaces/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interfaces/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interfaces/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interfaces/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interfaces/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interfaces/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interfaces/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interfaces/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interfaces/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interfaces/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interfaces/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interfaces/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interfaces/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interfaces/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interfaces/index

Day 07 - Understanding Object-Oriented Programming with C#

[250]

A class can inherit abstract class or a normal class and implement an interface.

In this section, we will implement abstraction using abstract class. Let's consider following
code-snippet:

public class AbstractionImplementation
{
public void Display()
{
BookAuthor author = new BookAuthor();
author.GetDetail();
BookEditor editor = new BookEditor();
editor.GetDetail();
BookReviewer reviewer = new BookReviewer();
reviewer.GetDetail();
}
}

Above code-snippet contains only one public method that is responsible to display the
operations. Display() method is one that gets the details of author , editor and reviewer of a
book. At first glance, we can say that above code is with different classes of different
implementation. But, actually we are abstracting our code with the help of abstract class, the
child or derived classes then providing the details whatever the demand.

Consider following code:

public abstract class Team
{
public abstract void GetDetail();
}

We have an abstract class Team with an abstract method GetDetail() this is the method that
is responsible to get the details of team. Now, think what this team include, this team build
with Author, Editor and a Reviewer. So, we have following code-snippet:

public class BookAuthor : Team
{
public override void GetDetail() => Display();
private void Display()
{
WriteLine("Author detail");
Write("Enter Author Name:");
var name = ReadLine();
WriteLine($"Book author is: {name}");
}
}

Day 07 - Understanding Object-Oriented Programming with C#

[251]

BookAuthor class inherits Team and override the GetDetail() method. This method further
call a private method Display() that is something user would not be aware. As user will call
only GetDetail() method.

In similar way, we have BookEditor and BookReviewer classes:

public class BookEditor : Team
{
public override void GetDetail() => Display();
private void Display()
{
WriteLine("Editor detail");
Write("Enter Editor Name:");
var name = ReadLine();
WriteLine($"Book editor is: {name}");
}
}
public class BookReviewer : Team
{
public override void GetDetail() => Display();
private void Display()
{
WriteLine("Reviewer detail");
Write("Enter Reviewer Name:");
var name = ReadLine();
WriteLine($"Book reviewer is: {name}");
}
}

In the preceding code, classes will only reveal one method, that is, GetDetail() to provide
the required details.

Following will be the output when this code will be called from the client:

Day 07 - Understanding Object-Oriented Programming with C#

[252]

Encapsulation
Encapsulation is a process where data is not directly accessible to user. When you want to
restrict or hide the direct access to data from client or user, that activity or a process is
known as encapsulation.

When we say information hiding that means hiding an information that doesn't require for
user or user is not interested in the information for example - when you buy a bike you'd
not be interested to know how it's engine works, how fuel supply exists internally, but
you're interested about the mileage of bike and so on.

Information hiding is not a data hiding but it is an implementation hiding
in C# for more information refer: http:/ ​/​blog. ​ploeh. ​dk/​2012/ ​11/ ​27/
Encapsulationofproperties/ ​.

In C# when functions and data combined in a single unit (called class) and you cannot
access the data directly is called encapsulation. In C# class, access modifiers are applied to
members, properties to avoid the direct access of data to other cases or users.

In this section, we will discuss about encapsulation in detail.

What are access modifier in C#?
As discussed in previous section, encapsulation is a concept of hiding information from the
outer world. In C#, we have access modifier or access specifiers that helps us to hide the
information. These access modifiers help you to define the scope and visibility of a class
member.

Following are the access modifiers:

Public
Private
Protected
Internal
Protected internal

We have already gone through all the preceding access modifiers during day four. Please
refer to section Access modifier and their accessibility to revise how these modifier works and
help us to define the visibility.

http://blog.ploeh.dk/2012/11/27/Encapsulationofproperties/
http://blog.ploeh.dk/2012/11/27/Encapsulationofproperties/
http://blog.ploeh.dk/2012/11/27/Encapsulationofproperties/
http://blog.ploeh.dk/2012/11/27/Encapsulationofproperties/
http://blog.ploeh.dk/2012/11/27/Encapsulationofproperties/
http://blog.ploeh.dk/2012/11/27/Encapsulationofproperties/
http://blog.ploeh.dk/2012/11/27/Encapsulationofproperties/
http://blog.ploeh.dk/2012/11/27/Encapsulationofproperties/
http://blog.ploeh.dk/2012/11/27/Encapsulationofproperties/
http://blog.ploeh.dk/2012/11/27/Encapsulationofproperties/
http://blog.ploeh.dk/2012/11/27/Encapsulationofproperties/
http://blog.ploeh.dk/2012/11/27/Encapsulationofproperties/
http://blog.ploeh.dk/2012/11/27/Encapsulationofproperties/
http://blog.ploeh.dk/2012/11/27/Encapsulationofproperties/
http://blog.ploeh.dk/2012/11/27/Encapsulationofproperties/
http://blog.ploeh.dk/2012/11/27/Encapsulationofproperties/
http://blog.ploeh.dk/2012/11/27/Encapsulationofproperties/

Day 07 - Understanding Object-Oriented Programming with C#

[253]

Implementing encapsulation
In this section, we will implement encapsulation in C# 7.0. Think a scenario where we need
to provide the information of an Author including recent published book. Consider
following code-snippet:

internal class Writer
{
 private string _title;
 private string _isbn;
 private string _name;
 public void SetName(string fname, string lName)
 {
 if (string.IsNullOrEmpty(fname) ||
 string.IsNullOrWhiteSpace(lName))
 throw new ArgumentException("Name can not be
 blank.");
 _name = $"{fname} {lName}";
 }
 public void SetTitle(string title)
 {
 if (string.IsNullOrWhiteSpace(title))
 throw new ArgumentException("Book title can not be
 blank.");
 _title = title;
 }
 public void SetIsbn(string isbn)
 {
 if (!string.IsNullOrEmpty(isbn))
 {
 if (isbn.Length == 10 | isbn.Length == 13)
 {
 if (!ulong.TryParse(isbn, out _))
 throw new ArgumentException("The ISBN can
 consist of numeric characters only.");
 }
 else
 throw new ArgumentException("ISBN should be 10 or 13
 characters numeric string only.");
 }
 _isbn = isbn;
 }
 public override string ToString() => $"Author '{_name}'
 has authored a book '{_title}' with ISBN '{_isbn}'";
 }

Day 07 - Understanding Object-Oriented Programming with C#

[254]

In the preceding code-snippet that is showing the implementation of encapsulation, we are
hiding our fields that user would not want to know. As the main motto is to show the
recent publication.

Following is the code for client, that need the information:

public class EncapsulationImplementation
{
 public void Display()
 {
 WriteLine("Encapsulation example");
 Writer writer = new Writer();
 Write("Enter First Name:");
 var fName = ReadLine();
 Write("Enter Last Name:");
 var lName = ReadLine();
 writer.SetName(fName,lName);
 Write("Book title:");
 writer.SetTitle(ReadLine());
 Write("Enter ISBN:");
 writer.SetIsbn(ReadLine());
 WriteLine("Complete details of book:");
 WriteLine(writer.ToString());
 }
}

The preceding code-snippet is to get the required information only. User would not be
aware of how the information is fetching/retrieving from class.

The preceding image is showing the exact output, you will see after execution of previous
code.

Day 07 - Understanding Object-Oriented Programming with C#

[255]

Polymorphism
In simple words, polymorphism means having many forms. In C#, we can express one
interface with multiple functions as polymorphism. Polymorphism is taken from Greek-
word that has meaning of many-shapes.

All types in C# (including user-defined types) inherit from object hence
every type in C# is polymorphic.

As we discussed polymorphism means many forms. These forms can be of functions where
we implement function of same name having same parameters in different forms in derived
classes. Also, polymorphism is having the capability to provide different implementation of
methods that are implemented with same name.

In coming sections, we will discuss the various types of polymorphism including their
implementation using C# 7.0.

Types of polymorphism
In C#, we have two types of polymorphism and these types are:

Compile-time polymorphism

Compile-time polymorphism is also famous as early binding or overloading
or static binding. It determines at compile-time and meant for same function
name with different parameters. Compile-time or early binding is further
divided into two more types and these types are:

Function Overloading

Function overloading as name is self-explanatory function is
overloaded. When you declare function with same name but
different parameters, it is called as function overloading. You can
declare as many overloaded functions as you want.

Day 07 - Understanding Object-Oriented Programming with C#

[256]

Consider following code-snippet:

public class Math
{
 public int Add(int num1, int num2) => num1 +
num2;
 public double Add(double num1, double num2) => num1
+ num2;
}

The preceding code is a representation of overloading, Math class is
having a method Add() with an overload the parameters of type
double. These methods in meant to separate behaviour. Consider
following code:

public class CompileTimePolymorphismImplementation
{
 public void Run()
 {
 Write("Enter first number:");
 var num1 = ReadLine();
 Write("Enter second number:");
 var num2 = ReadLine();
 Math math = new Math();
 var sum1 = math.Add(FloatToInt(num1),
 FloatToInt(num1));
 var sum2 = math.Add(ToFloat(num1),
ToFloat(num2));
 WriteLine("Using Addd(int num1, int num2)");
 WriteLine($"{FloatToInt(num1)} +
{FloatToInt(num2)}
 = {sum1}");
 WriteLine("Using Add(double num1, double num2)");
 WriteLine($"{ToFloat(num1)} + {ToFloat(num2)} =
 {sum2}");
 }
 private int FloatToInt(string num) =>
 (int)System.Math.Round(ToFloat(num), 0);
 private float ToFloat(string num) =
 float.Parse(num);
}

Day 07 - Understanding Object-Oriented Programming with C#

[257]

The preceding code snippet is using both the methods. Following is
the output of the preceding implementation:

If you analyse previous result you will find the overloaded method
that accepts double parameters provides accurate results that is, 99
because we supplied decimal values and it adds decimals. On the
other had Add method with integer type parameter, apply round of
to double and convert them into integer so, it displays the wrong
result. However previous example is not related to correct
calculations but this tells about the compile-time polymorphism
using function overloading.

Operator Overloading

Operator loading is a way to redefine the actual functionality of a
particular operator.

This is important while you're working with user-defined complex
types where direct use of in-built operators is impossible.

We have already discussed operator overloading in details during
Chapter 2, Day 02 – Getting Started with C# section - Operator
Overloading - refer to this section if you want to revise operator
overloading.

Day 07 - Understanding Object-Oriented Programming with C#

[258]

Run-time polimorphism

Run-time polymorphism is also famous as late binding or overriding or
dynamic binding. We can achieve run-time polymorphism by overriding
methods in C#. The virtual or abstract methods can be overridden in derived
classes.

In C# abstract classes provide a way to implement run-time polymorphism
where we override abstract methods in derived classes. The virtual
keyword is also a way to override method in derive class. We discussed
virtual keyword during Chapter 2, Day 02 – Getting Started with C# (refer if
you want to revise it).

Consider the following example:

internal abstract class Team
{
 public abstract string Detail();
}
internal class Author : Team
{
 private readonly string _name;
 public Author(string name) => _name = name;
 public override string Detail()
 {
 WriteLine("Author Team:");
 return $"Member name: {_name}";
 }
}

The preceding code-snippet showing overriding with the implementation of
abstract class in C#. Here abstract class Team is having an abstract method
Detail() that is overridden.

public class RunTimePolymorphismImplementation
{
 public void Run()
 {
 Write("Enter name:");
 var name = ReadLine();
 Author author = new Author(name);
 WriteLine(author.Detail());
 }
}

Day 07 - Understanding Object-Oriented Programming with C#

[259]

The preceding code-snippet is consuming Author class and produces the
following output:

The preceding image is showing output of a program example implementing
of abstract class.

We can also implement run-time polymorphism using abstract class and
virtual methods, consider following code-snippet:

internal class Team
{
 protected string Name;
 public Team(string name)
 {
 Name = name;
 }
 public virtual string Detail() => Name;
}
internal class Author : Team
{
 public Author(string name) : base(name)
 {}
 public override string Detail() => Name;
}
internal class Editor : Team
{
 public Editor(string name) : base(name)
 {}
 public override string Detail() => Name;
}
internal class Client
{
 public void ShowDetail(Team team) =>
 WriteLine($"Member: {team.Detail()}");
}

Day 07 - Understanding Object-Oriented Programming with C#

[260]

In the preceding, code-snippet is an implementation example of run-time
polymorphism where our client accepting object of type Team and perform
the operation by knowing the type of a class at runtime.

Our method ShowDetail() displays the member name of a particular type.

Implementing polymorphism
Let's implement polymorphism in a complete, consider the following code-snippet:

public class PolymorphismImplementation
{
 public void Build()
 {
 List<Team> teams = new List<Team> {new Author(), new
 Editor(), new Reviewer()};
 foreach (Team team in teams)
 team.BuildTeam();
 }
}
public class Team
{
 public string Name { get; private set; }
 public string Title { get; private set; }
 public virtual void BuildTeam()
 {
 Write("Name:");
 Name = ReadLine();
 Write("Title:");
 Title = ReadLine();

Day 07 - Understanding Object-Oriented Programming with C#

[261]

 WriteLine();
 WriteLine($"Name:{Name}\nTitle:{Title}");
 WriteLine();
 }
}
internal class Author : Team
{
 public override void BuildTeam()
 {
 WriteLine("Building Author Team");
 base.BuildTeam();
 }
}
internal class Editor : Team
{
 public override void BuildTeam()
 {
 WriteLine("Building Editor Team");
 base.BuildTeam();
 }
}
internal class Reviewer : Team
{
 public override void BuildTeam()
 {
 WriteLine("Building Reviewer Team");
 base.BuildTeam();
 }
}

The preceding code-snippet is a representation of polymorphism, that is building different
teams. It produces the following output:

Day 07 - Understanding Object-Oriented Programming with C#

[262]

The preceding image is showing results from a program that represents the implementation
of polymorphism.

Hands on Exercise
Here are the unsolved questions from today's study:

What is OOP?1.
Why we should use OOP language over procedural language?2.
Define inheritance?3.
How many type of inheritance is available in general?4.
Why we can't implement multiple inheritance in C#?5.
How we can achieve multiple inheritance in C#.6.
Define inherited member visibility with the help of a short program.7.
Define hiding and elaborate with the help of a short program.8.
What is overriding?9.

Day 07 - Understanding Object-Oriented Programming with C#

[263]

When to use hiding and when to use overriding, elaborate with the help of a10.
short program (hint: refer to - https:/ ​/ ​docs. ​microsoft. ​com/​en- ​us/ ​dotnet/
csharp/​programming- ​guide/ ​classes- ​and- ​structs/ ​knowing- ​when- ​to-​use-
override- ​and- ​new- ​keywords)
What is implicit inheritance?11.
What is the difference between abstract class and interface?12.
What is encapsulation, elaborate it with the help of a short program.13.
Define access modifiers or access specifiers that are helpful in encapsulation.14.
What is abstraction? Elaborate it with a real-world example.15.
What is the difference between encapsulation and abstraction with the help of a16.
real-world example. (hint: https:/ ​/​stackoverflow. ​com/ ​questions/ ​16014290/
simple-​way- ​to- ​understand- ​encapsulation- ​and- ​abstraction)
When to use abstract class and interface elaborate with the help of short program.17.
(hint: https:/ ​/​dzone. ​com/ ​articles/ ​when- ​to- ​use-​abstract- ​class- ​and-
intreface)
What is the difference between abstract and virtual functions? (hint: https:/ ​/18.
stackoverflow. ​com/ ​questions/ ​391483/ ​what- ​is- ​the- ​difference- ​between- ​an-
abstract- ​function- ​and- ​a- ​virtual- ​function)
Define polymorphism in C#?19.
How many types of polymorphism, implement using a short program using C#20.
7.0?
Define late binding and early binding with the use of real world example.21.
Prove this with the help of a program - In C# every type is a polymorphic.22.
What is the difference between overloading and overriding?23.

Revisiting Day 7
Finally, we are at the stage where we conclude the final day that is, day seven of our 7-days
learning series. Today, we have gone through concepts of OOP paradigm where we started
with object relationship and get an overview of association, aggregation and composition
and then we discussed structural and procedural language. We discussed all four features
that is, encapsulation, abstraction, inheritance, and polymorphism of OOP. We also
implemented OOP concepts using C# 7.0.

Tomorrow, on day eight we will be starting a real-world application that will help us to
revise all our concepts till today. If you want to revise now, please go ahead and take a look
in previous day's learning.

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/knowing-when-to-use-override-and-new-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/knowing-when-to-use-override-and-new-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/knowing-when-to-use-override-and-new-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/knowing-when-to-use-override-and-new-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/knowing-when-to-use-override-and-new-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/knowing-when-to-use-override-and-new-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/knowing-when-to-use-override-and-new-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/knowing-when-to-use-override-and-new-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/knowing-when-to-use-override-and-new-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/knowing-when-to-use-override-and-new-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/knowing-when-to-use-override-and-new-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/knowing-when-to-use-override-and-new-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/knowing-when-to-use-override-and-new-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/knowing-when-to-use-override-and-new-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/knowing-when-to-use-override-and-new-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/knowing-when-to-use-override-and-new-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/knowing-when-to-use-override-and-new-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/knowing-when-to-use-override-and-new-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/knowing-when-to-use-override-and-new-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/knowing-when-to-use-override-and-new-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/knowing-when-to-use-override-and-new-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/knowing-when-to-use-override-and-new-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/knowing-when-to-use-override-and-new-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/knowing-when-to-use-override-and-new-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/knowing-when-to-use-override-and-new-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/knowing-when-to-use-override-and-new-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/knowing-when-to-use-override-and-new-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/knowing-when-to-use-override-and-new-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/knowing-when-to-use-override-and-new-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/knowing-when-to-use-override-and-new-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/knowing-when-to-use-override-and-new-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/knowing-when-to-use-override-and-new-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/knowing-when-to-use-override-and-new-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/knowing-when-to-use-override-and-new-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/knowing-when-to-use-override-and-new-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/knowing-when-to-use-override-and-new-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/knowing-when-to-use-override-and-new-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/knowing-when-to-use-override-and-new-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/knowing-when-to-use-override-and-new-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/knowing-when-to-use-override-and-new-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/knowing-when-to-use-override-and-new-keywords
https://stackoverflow.com/questions/16014290/simple-way-to-understand-encapsulation-and-abstraction
https://stackoverflow.com/questions/16014290/simple-way-to-understand-encapsulation-and-abstraction
https://stackoverflow.com/questions/16014290/simple-way-to-understand-encapsulation-and-abstraction
https://stackoverflow.com/questions/16014290/simple-way-to-understand-encapsulation-and-abstraction
https://stackoverflow.com/questions/16014290/simple-way-to-understand-encapsulation-and-abstraction
https://stackoverflow.com/questions/16014290/simple-way-to-understand-encapsulation-and-abstraction
https://stackoverflow.com/questions/16014290/simple-way-to-understand-encapsulation-and-abstraction
https://stackoverflow.com/questions/16014290/simple-way-to-understand-encapsulation-and-abstraction
https://stackoverflow.com/questions/16014290/simple-way-to-understand-encapsulation-and-abstraction
https://stackoverflow.com/questions/16014290/simple-way-to-understand-encapsulation-and-abstraction
https://stackoverflow.com/questions/16014290/simple-way-to-understand-encapsulation-and-abstraction
https://stackoverflow.com/questions/16014290/simple-way-to-understand-encapsulation-and-abstraction
https://stackoverflow.com/questions/16014290/simple-way-to-understand-encapsulation-and-abstraction
https://stackoverflow.com/questions/16014290/simple-way-to-understand-encapsulation-and-abstraction
https://stackoverflow.com/questions/16014290/simple-way-to-understand-encapsulation-and-abstraction
https://stackoverflow.com/questions/16014290/simple-way-to-understand-encapsulation-and-abstraction
https://stackoverflow.com/questions/16014290/simple-way-to-understand-encapsulation-and-abstraction
https://stackoverflow.com/questions/16014290/simple-way-to-understand-encapsulation-and-abstraction
https://stackoverflow.com/questions/16014290/simple-way-to-understand-encapsulation-and-abstraction
https://stackoverflow.com/questions/16014290/simple-way-to-understand-encapsulation-and-abstraction
https://stackoverflow.com/questions/16014290/simple-way-to-understand-encapsulation-and-abstraction
https://stackoverflow.com/questions/16014290/simple-way-to-understand-encapsulation-and-abstraction
https://stackoverflow.com/questions/16014290/simple-way-to-understand-encapsulation-and-abstraction
https://stackoverflow.com/questions/16014290/simple-way-to-understand-encapsulation-and-abstraction
https://dzone.com/articles/when-to-use-abstract-class-and-intreface
https://dzone.com/articles/when-to-use-abstract-class-and-intreface
https://dzone.com/articles/when-to-use-abstract-class-and-intreface
https://dzone.com/articles/when-to-use-abstract-class-and-intreface
https://dzone.com/articles/when-to-use-abstract-class-and-intreface
https://dzone.com/articles/when-to-use-abstract-class-and-intreface
https://dzone.com/articles/when-to-use-abstract-class-and-intreface
https://dzone.com/articles/when-to-use-abstract-class-and-intreface
https://dzone.com/articles/when-to-use-abstract-class-and-intreface
https://dzone.com/articles/when-to-use-abstract-class-and-intreface
https://dzone.com/articles/when-to-use-abstract-class-and-intreface
https://dzone.com/articles/when-to-use-abstract-class-and-intreface
https://dzone.com/articles/when-to-use-abstract-class-and-intreface
https://dzone.com/articles/when-to-use-abstract-class-and-intreface
https://dzone.com/articles/when-to-use-abstract-class-and-intreface
https://dzone.com/articles/when-to-use-abstract-class-and-intreface
https://dzone.com/articles/when-to-use-abstract-class-and-intreface
https://dzone.com/articles/when-to-use-abstract-class-and-intreface
https://dzone.com/articles/when-to-use-abstract-class-and-intreface
https://dzone.com/articles/when-to-use-abstract-class-and-intreface
https://dzone.com/articles/when-to-use-abstract-class-and-intreface
https://dzone.com/articles/when-to-use-abstract-class-and-intreface
https://stackoverflow.com/questions/391483/what-is-the-difference-between-an-abstract-function-and-a-virtual-function
https://stackoverflow.com/questions/391483/what-is-the-difference-between-an-abstract-function-and-a-virtual-function
https://stackoverflow.com/questions/391483/what-is-the-difference-between-an-abstract-function-and-a-virtual-function
https://stackoverflow.com/questions/391483/what-is-the-difference-between-an-abstract-function-and-a-virtual-function
https://stackoverflow.com/questions/391483/what-is-the-difference-between-an-abstract-function-and-a-virtual-function
https://stackoverflow.com/questions/391483/what-is-the-difference-between-an-abstract-function-and-a-virtual-function
https://stackoverflow.com/questions/391483/what-is-the-difference-between-an-abstract-function-and-a-virtual-function
https://stackoverflow.com/questions/391483/what-is-the-difference-between-an-abstract-function-and-a-virtual-function
https://stackoverflow.com/questions/391483/what-is-the-difference-between-an-abstract-function-and-a-virtual-function
https://stackoverflow.com/questions/391483/what-is-the-difference-between-an-abstract-function-and-a-virtual-function
https://stackoverflow.com/questions/391483/what-is-the-difference-between-an-abstract-function-and-a-virtual-function
https://stackoverflow.com/questions/391483/what-is-the-difference-between-an-abstract-function-and-a-virtual-function
https://stackoverflow.com/questions/391483/what-is-the-difference-between-an-abstract-function-and-a-virtual-function
https://stackoverflow.com/questions/391483/what-is-the-difference-between-an-abstract-function-and-a-virtual-function
https://stackoverflow.com/questions/391483/what-is-the-difference-between-an-abstract-function-and-a-virtual-function
https://stackoverflow.com/questions/391483/what-is-the-difference-between-an-abstract-function-and-a-virtual-function
https://stackoverflow.com/questions/391483/what-is-the-difference-between-an-abstract-function-and-a-virtual-function
https://stackoverflow.com/questions/391483/what-is-the-difference-between-an-abstract-function-and-a-virtual-function
https://stackoverflow.com/questions/391483/what-is-the-difference-between-an-abstract-function-and-a-virtual-function
https://stackoverflow.com/questions/391483/what-is-the-difference-between-an-abstract-function-and-a-virtual-function
https://stackoverflow.com/questions/391483/what-is-the-difference-between-an-abstract-function-and-a-virtual-function
https://stackoverflow.com/questions/391483/what-is-the-difference-between-an-abstract-function-and-a-virtual-function
https://stackoverflow.com/questions/391483/what-is-the-difference-between-an-abstract-function-and-a-virtual-function
https://stackoverflow.com/questions/391483/what-is-the-difference-between-an-abstract-function-and-a-virtual-function
https://stackoverflow.com/questions/391483/what-is-the-difference-between-an-abstract-function-and-a-virtual-function
https://stackoverflow.com/questions/391483/what-is-the-difference-between-an-abstract-function-and-a-virtual-function
https://stackoverflow.com/questions/391483/what-is-the-difference-between-an-abstract-function-and-a-virtual-function
https://stackoverflow.com/questions/391483/what-is-the-difference-between-an-abstract-function-and-a-virtual-function
https://stackoverflow.com/questions/391483/what-is-the-difference-between-an-abstract-function-and-a-virtual-function
https://stackoverflow.com/questions/391483/what-is-the-difference-between-an-abstract-function-and-a-virtual-function
https://stackoverflow.com/questions/391483/what-is-the-difference-between-an-abstract-function-and-a-virtual-function
https://stackoverflow.com/questions/391483/what-is-the-difference-between-an-abstract-function-and-a-virtual-function
https://stackoverflow.com/questions/391483/what-is-the-difference-between-an-abstract-function-and-a-virtual-function

Day 07 - Understanding Object-Oriented Programming with C#

[264]

What next?
Today we concluded our 7th days of 7-days learning series. During this journey, we have
started with very basic and then gradually adapted the advanced terms but this is just a
beginning there are more to grab. I tried to combine almost all things here for next step, I
suggest you should learn these:

Multi- threading1.
Constructor chaining2.
Indexers3.
Extension methods4.
Advanced regular expression5.
Advanced unsafe code implementation6.
Advanced concepts of garbage collection7.

For more advance topics, please refer to following:

C# 7.0 and .NET Core Cookbook (https:/ ​/​www. ​packtpub. ​com/​application-1.
development/ ​c- ​7- ​and- ​net- ​core- ​cookbook)
http:/​/​questpond. ​over- ​blog. ​com/​2.
Functional C# (https:/ ​/ ​www. ​packtpub. ​com/ ​application- ​development/3.
functional- ​c)
Multithreading with C# Cookbook - Second Edition (https:/ ​/​www. ​packtpub.4.
com/​application- ​development/ ​multithreading- ​c-​cookbook- ​second- ​edition)

https://www.packtpub.com/application-development/c-7-and-net-core-cookbook
https://www.packtpub.com/application-development/c-7-and-net-core-cookbook
https://www.packtpub.com/application-development/c-7-and-net-core-cookbook
https://www.packtpub.com/application-development/c-7-and-net-core-cookbook
https://www.packtpub.com/application-development/c-7-and-net-core-cookbook
https://www.packtpub.com/application-development/c-7-and-net-core-cookbook
https://www.packtpub.com/application-development/c-7-and-net-core-cookbook
https://www.packtpub.com/application-development/c-7-and-net-core-cookbook
https://www.packtpub.com/application-development/c-7-and-net-core-cookbook
https://www.packtpub.com/application-development/c-7-and-net-core-cookbook
https://www.packtpub.com/application-development/c-7-and-net-core-cookbook
https://www.packtpub.com/application-development/c-7-and-net-core-cookbook
https://www.packtpub.com/application-development/c-7-and-net-core-cookbook
https://www.packtpub.com/application-development/c-7-and-net-core-cookbook
https://www.packtpub.com/application-development/c-7-and-net-core-cookbook
https://www.packtpub.com/application-development/c-7-and-net-core-cookbook
https://www.packtpub.com/application-development/c-7-and-net-core-cookbook
https://www.packtpub.com/application-development/c-7-and-net-core-cookbook
https://www.packtpub.com/application-development/c-7-and-net-core-cookbook
https://www.packtpub.com/application-development/c-7-and-net-core-cookbook
https://www.packtpub.com/application-development/c-7-and-net-core-cookbook
https://www.packtpub.com/application-development/c-7-and-net-core-cookbook
https://www.packtpub.com/application-development/c-7-and-net-core-cookbook
https://www.packtpub.com/application-development/c-7-and-net-core-cookbook
http://questpond.over-blog.com/
http://questpond.over-blog.com/
http://questpond.over-blog.com/
http://questpond.over-blog.com/
http://questpond.over-blog.com/
http://questpond.over-blog.com/
http://questpond.over-blog.com/
http://questpond.over-blog.com/
http://questpond.over-blog.com/
http://questpond.over-blog.com/
http://questpond.over-blog.com/
http://questpond.over-blog.com/
https://www.packtpub.com/application-development/functional-c
https://www.packtpub.com/application-development/functional-c
https://www.packtpub.com/application-development/functional-c
https://www.packtpub.com/application-development/functional-c
https://www.packtpub.com/application-development/functional-c
https://www.packtpub.com/application-development/functional-c
https://www.packtpub.com/application-development/functional-c
https://www.packtpub.com/application-development/functional-c
https://www.packtpub.com/application-development/functional-c
https://www.packtpub.com/application-development/functional-c
https://www.packtpub.com/application-development/functional-c
https://www.packtpub.com/application-development/functional-c
https://www.packtpub.com/application-development/functional-c
https://www.packtpub.com/application-development/functional-c
https://www.packtpub.com/application-development/functional-c
https://www.packtpub.com/application-development/functional-c
https://www.packtpub.com/application-development/multithreading-c-cookbook-second-edition
https://www.packtpub.com/application-development/multithreading-c-cookbook-second-edition
https://www.packtpub.com/application-development/multithreading-c-cookbook-second-edition
https://www.packtpub.com/application-development/multithreading-c-cookbook-second-edition
https://www.packtpub.com/application-development/multithreading-c-cookbook-second-edition
https://www.packtpub.com/application-development/multithreading-c-cookbook-second-edition
https://www.packtpub.com/application-development/multithreading-c-cookbook-second-edition
https://www.packtpub.com/application-development/multithreading-c-cookbook-second-edition
https://www.packtpub.com/application-development/multithreading-c-cookbook-second-edition
https://www.packtpub.com/application-development/multithreading-c-cookbook-second-edition
https://www.packtpub.com/application-development/multithreading-c-cookbook-second-edition
https://www.packtpub.com/application-development/multithreading-c-cookbook-second-edition
https://www.packtpub.com/application-development/multithreading-c-cookbook-second-edition
https://www.packtpub.com/application-development/multithreading-c-cookbook-second-edition
https://www.packtpub.com/application-development/multithreading-c-cookbook-second-edition
https://www.packtpub.com/application-development/multithreading-c-cookbook-second-edition
https://www.packtpub.com/application-development/multithreading-c-cookbook-second-edition
https://www.packtpub.com/application-development/multithreading-c-cookbook-second-edition
https://www.packtpub.com/application-development/multithreading-c-cookbook-second-edition
https://www.packtpub.com/application-development/multithreading-c-cookbook-second-edition
https://www.packtpub.com/application-development/multithreading-c-cookbook-second-edition
https://www.packtpub.com/application-development/multithreading-c-cookbook-second-edition

8
Day 08 - Test Your Skills –

Build a Real-World Application
On the seventh day, we went through the OOP concepts in C# 7.0. With the understanding
of OOP concepts, our journey of this learning series needs a hands-on, practical, and real-
world application, and this is the reason we are here. Today is our revision day of the
seven-day learning series. In the past seven days, we learned a lot of stuff, including the
following:

.NET Framework and .NET Core
Basic C# concepts, including statements, loops, classes, structures, and so on
Advanced C# concepts, including delegates, generics, collections, file handling,
attributes, and so on
The new features of C# 7.0 and C# 7.1

In the last seven days, we covered the aforementioned topics in detail, with the help of code
snippets, and we discussed the code in detail. We started with the very basic concepts on
Day 1, covered the intermediate stuff on Day 2 and Day 3, and then gradually went through
advanced topics with code explanations.

Today, we will revisit everything and build a real-world application in C# 7.0. Here are the
steps we will follow to complete the application:

Discussing the requirements of our application.1.
Why are we developing this application?2.
Getting started with application development:3.

Prerequisites
The database design
Discussing the basic architecture

Day 08 - Test Your Skills – Build a Real-World Application

[266]

Why are we developing this application?
Our application will be based on India's GST taxation system (http://www.gstn.org/). In
India, this system has been recently announced and there is a heavy demand in the industry
to adopt it as soon as possible. This is the right time to create a real-world application that
gives us a practical experience.

Discussing the requirements of our application:

In this section, we will discuss our application and lay it out. First of all, let's decide a name
for our application; let's call it FlixOneInvoicing—a system that generates invoices. As
discussed in the previous section, today's industry needs a system that can fulfill its
demand to entertain all the parts of GST that we are demonstrating with the help of our
example of GST-based application to . Here are the main requirements of the system:

The system should be company-specific, and the company should be
configurable
The company can have multiple addresses (registered and shipping addresses
may be different)
The company can be an individual or a registered entity
The system should have client/customer features
The system should support both service and goods industries
The system should follow Indian GST rules
The system should have a reports capability
The system should have basic operations such as add, update, delete, and so on

The aforementioned high-level requirements give us an idea of the kind of system we are
going to develop. In the coming sections, we will develop an application based on these
requirements.

Getting started with application development
In the previous sections, we discussed why we are going to develop this application and
why it is required, as per industry demands. We also discussed the basic system
requirements, and we laid out the system theoretically so that when we start with the actual
coding, we can follow all these rules/requirements. In this section, we will start the actual
development.

http://www.gstn.org/

Day 08 - Test Your Skills – Build a Real-World Application

[267]

Prerequisites
To start the development of this application, we need the following as prerequisites:

Visual Studio 2017 update 3 or later
SQL Server 2008 R2 or later
C# 7.0 or later
ASP.NET Core
Entity Framework Core

The database design
To perform the database design, you should have a basic knowledge of the SQL Server and
the core concepts of database. The following resources may be helpful if you want to learn
database concepts:

https:/​/ ​www. ​codeproject. ​com/ ​Articles/ ​359654/ ​important- ​database-
designing- ​rules- ​which- ​I- ​fo

https:/​/ ​www. ​packtpub. ​com/ ​big- ​data- ​and- ​business- ​intelligence/ ​sql-
server-​2016- ​developer- ​guide

http:/​/​www. ​studytonight. ​com/ ​dbms/ ​database- ​normalization. ​php

On the basis of the basic business requirements that we discussed in the previous section for
laying our system out, let's design a complete database so that we can save the important
application data.

Overview
We need to develop our database in such a way that it should work on the basis of single
system, multiple companies. The single system, multiple companies feature will enable our
system to work within a corporate structure, where the company has multiple branches
with one head office and separate users to maintain the system for other branches.

https://www.codeproject.com/Articles/359654/important-database-designing-rules-which-I-fo
https://www.codeproject.com/Articles/359654/important-database-designing-rules-which-I-fo
https://www.codeproject.com/Articles/359654/important-database-designing-rules-which-I-fo
https://www.codeproject.com/Articles/359654/important-database-designing-rules-which-I-fo
https://www.codeproject.com/Articles/359654/important-database-designing-rules-which-I-fo
https://www.codeproject.com/Articles/359654/important-database-designing-rules-which-I-fo
https://www.codeproject.com/Articles/359654/important-database-designing-rules-which-I-fo
https://www.codeproject.com/Articles/359654/important-database-designing-rules-which-I-fo
https://www.codeproject.com/Articles/359654/important-database-designing-rules-which-I-fo
https://www.codeproject.com/Articles/359654/important-database-designing-rules-which-I-fo
https://www.codeproject.com/Articles/359654/important-database-designing-rules-which-I-fo
https://www.codeproject.com/Articles/359654/important-database-designing-rules-which-I-fo
https://www.codeproject.com/Articles/359654/important-database-designing-rules-which-I-fo
https://www.codeproject.com/Articles/359654/important-database-designing-rules-which-I-fo
https://www.codeproject.com/Articles/359654/important-database-designing-rules-which-I-fo
https://www.codeproject.com/Articles/359654/important-database-designing-rules-which-I-fo
https://www.codeproject.com/Articles/359654/important-database-designing-rules-which-I-fo
https://www.codeproject.com/Articles/359654/important-database-designing-rules-which-I-fo
https://www.codeproject.com/Articles/359654/important-database-designing-rules-which-I-fo
https://www.codeproject.com/Articles/359654/important-database-designing-rules-which-I-fo
https://www.codeproject.com/Articles/359654/important-database-designing-rules-which-I-fo
https://www.codeproject.com/Articles/359654/important-database-designing-rules-which-I-fo
https://www.codeproject.com/Articles/359654/important-database-designing-rules-which-I-fo
https://www.codeproject.com/Articles/359654/important-database-designing-rules-which-I-fo
https://www.codeproject.com/Articles/359654/important-database-designing-rules-which-I-fo
https://www.codeproject.com/Articles/359654/important-database-designing-rules-which-I-fo
https://www.packtpub.com/big-data-and-business-intelligence/sql-server-2016-developer-guide
https://www.packtpub.com/big-data-and-business-intelligence/sql-server-2016-developer-guide
https://www.packtpub.com/big-data-and-business-intelligence/sql-server-2016-developer-guide
https://www.packtpub.com/big-data-and-business-intelligence/sql-server-2016-developer-guide
https://www.packtpub.com/big-data-and-business-intelligence/sql-server-2016-developer-guide
https://www.packtpub.com/big-data-and-business-intelligence/sql-server-2016-developer-guide
https://www.packtpub.com/big-data-and-business-intelligence/sql-server-2016-developer-guide
https://www.packtpub.com/big-data-and-business-intelligence/sql-server-2016-developer-guide
https://www.packtpub.com/big-data-and-business-intelligence/sql-server-2016-developer-guide
https://www.packtpub.com/big-data-and-business-intelligence/sql-server-2016-developer-guide
https://www.packtpub.com/big-data-and-business-intelligence/sql-server-2016-developer-guide
https://www.packtpub.com/big-data-and-business-intelligence/sql-server-2016-developer-guide
https://www.packtpub.com/big-data-and-business-intelligence/sql-server-2016-developer-guide
https://www.packtpub.com/big-data-and-business-intelligence/sql-server-2016-developer-guide
https://www.packtpub.com/big-data-and-business-intelligence/sql-server-2016-developer-guide
https://www.packtpub.com/big-data-and-business-intelligence/sql-server-2016-developer-guide
https://www.packtpub.com/big-data-and-business-intelligence/sql-server-2016-developer-guide
https://www.packtpub.com/big-data-and-business-intelligence/sql-server-2016-developer-guide
https://www.packtpub.com/big-data-and-business-intelligence/sql-server-2016-developer-guide
https://www.packtpub.com/big-data-and-business-intelligence/sql-server-2016-developer-guide
https://www.packtpub.com/big-data-and-business-intelligence/sql-server-2016-developer-guide
https://www.packtpub.com/big-data-and-business-intelligence/sql-server-2016-developer-guide
https://www.packtpub.com/big-data-and-business-intelligence/sql-server-2016-developer-guide
https://www.packtpub.com/big-data-and-business-intelligence/sql-server-2016-developer-guide
https://www.packtpub.com/big-data-and-business-intelligence/sql-server-2016-developer-guide
https://www.packtpub.com/big-data-and-business-intelligence/sql-server-2016-developer-guide
https://www.packtpub.com/big-data-and-business-intelligence/sql-server-2016-developer-guide
https://www.packtpub.com/big-data-and-business-intelligence/sql-server-2016-developer-guide
http://www.studytonight.com/dbms/database-normalization.php
http://www.studytonight.com/dbms/database-normalization.php
http://www.studytonight.com/dbms/database-normalization.php
http://www.studytonight.com/dbms/database-normalization.php
http://www.studytonight.com/dbms/database-normalization.php
http://www.studytonight.com/dbms/database-normalization.php
http://www.studytonight.com/dbms/database-normalization.php
http://www.studytonight.com/dbms/database-normalization.php
http://www.studytonight.com/dbms/database-normalization.php
http://www.studytonight.com/dbms/database-normalization.php
http://www.studytonight.com/dbms/database-normalization.php
http://www.studytonight.com/dbms/database-normalization.php
http://www.studytonight.com/dbms/database-normalization.php
http://www.studytonight.com/dbms/database-normalization.php
http://www.studytonight.com/dbms/database-normalization.php
http://www.studytonight.com/dbms/database-normalization.php
http://www.studytonight.com/dbms/database-normalization.php

Day 08 - Test Your Skills – Build a Real-World Application

[268]

In this section, we will discuss following database diagram:

As per our requirements, our system is meant for multiple companies, which means that
every company will have its own configuration, users, customers, and invoices. For
example, if two different companies (abc and xyz) use the same system, then the users of abc
can only access the information of abc.

The current system does not follow B2B or B2C categories.

Let's analyze the previous database diagram to understand the relational hierarchy in
action. The Company table is referenced by the User table so that a user is specific to a
company only. The Address table stands out of the Company and Customer tables, and is
referenced by both the tables. Having the Address table refer to the Company and
Customer tables allows us to have more than one address for each one of them.

Day 08 - Test Your Skills – Build a Real-World Application

[269]

The master data for countries and states is stored in the Country and State tables,
respectively. The state can only belong to a specific country and, therefore, refers to the
Country table accordingly.

We arrange our tables in this way to achieve normalization. Refer to
http:/ ​/ ​searchsqlserver. ​techtarget. ​com/ ​definition/ ​normalization in
order to understand the concept of normalization in a database.

Discussing the schema and table:

In the previous section, we got an overview of our database design. Let's discuss the
important tables and their usage in the system:

User: This table contains all the data related to users across the companies. These
are the users who can operate on the system. This table holds the user
information; companyid is a foreign key with the Company table, and it provides
a relation between the User and Company tables to instruct the system that a
particular user is meant for a specific company:

http://searchsqlserver.techtarget.com/definition/normalization
http://searchsqlserver.techtarget.com/definition/normalization
http://searchsqlserver.techtarget.com/definition/normalization
http://searchsqlserver.techtarget.com/definition/normalization
http://searchsqlserver.techtarget.com/definition/normalization
http://searchsqlserver.techtarget.com/definition/normalization
http://searchsqlserver.techtarget.com/definition/normalization
http://searchsqlserver.techtarget.com/definition/normalization
http://searchsqlserver.techtarget.com/definition/normalization
http://searchsqlserver.techtarget.com/definition/normalization
http://searchsqlserver.techtarget.com/definition/normalization
http://searchsqlserver.techtarget.com/definition/normalization
http://searchsqlserver.techtarget.com/definition/normalization

Day 08 - Test Your Skills – Build a Real-World Application

[270]

Company: This table contains all the information related to the company and
stores the name and GSTN fields. The GSTN field is blank, if the company is not
a registered company for GSTN. There is a foreign key relationship with the
Address table, as one company may have multiple addresses. So, the the
Company and Address tables exhibit a one-to-many relationship:

Customer: This table contains all the information related to a customer, including
Name and GSTN. The GSTN field is blank, as an individual would not be
registered for GSTN. This table also has a relationship with the Address table:

Day 08 - Test Your Skills – Build a Real-World Application

[271]

Address: This table contains all the information related to the company or
customer addresses, which may be multiple:

Invoice and InvoiceDetails: These tables are transactional tables. The Invoice
table contains all the details that are required to create an invoice, and the
InvoiceDetails table contains the complete details of items/transactions for a
specific invoice:

Day 08 - Test Your Skills – Build a Real-World Application

[272]

Country and State: These tables store the master record data. This data will not
change, and no system transaction can affect the data stored in these two tables.
As of now, these two tables contain the master data specific to India:

As per our initial requirements, the preceding tables are fine; we can add/update the tables
as and when we get more or updated requirements. The system is meant for updates.

You can refer to Database_FlixOneInvoice.sql for the complete
database schema and master data that is available on GitHub repository
[<url>] in Day-08.

In the next section, we will discuss system architecture and the actual code that we are
going to write.

Discussing the basic architecture
In this section, we will discuss the basic architecture of our application; we will not discuss
design patterns and other architecture-related stuff, which are beyond the scope of this
book.

To understand design patterns, refer to https:/ ​/​www. ​questpond. ​com/
demo. ​html#designpattern.

https://www.questpond.com/demo.html#designpattern
https://www.questpond.com/demo.html#designpattern
https://www.questpond.com/demo.html#designpattern
https://www.questpond.com/demo.html#designpattern
https://www.questpond.com/demo.html#designpattern
https://www.questpond.com/demo.html#designpattern
https://www.questpond.com/demo.html#designpattern
https://www.questpond.com/demo.html#designpattern
https://www.questpond.com/demo.html#designpattern
https://www.questpond.com/demo.html#designpattern
https://www.questpond.com/demo.html#designpattern
https://www.questpond.com/demo.html#designpattern

Day 08 - Test Your Skills – Build a Real-World Application

[273]

As mentioned in the prerequisites, our application will be based on ASP.NET Core, which
consumes the RESTful API. This is just a basic version, so we are not going to show too
much implementation of the design patterns. The following image gives a schematic
overview of our Visual Studio solution. We have a presentation and domain, you can split
these layers to more layers to define business workflow.

I wrote the actual code using C# 7.0; the application covers whatever we discussed on Day
7.

Complete application is shipped with this chapter on GitHub: <<Link>>

In this section, we will cover the main code snippets of whatever we learned up to Day 7.
Download the complete application, open the solution in Visual Studio, and then visit the
code. Relate the code with everything that you learned in this seven-day journey. For
instance, see where we have used inheritance, encapsulation, and so on. Try to visualize the
concepts we discussed in this book. You will be able to connect each and every statement of
code written for our application.

Revisiting day 08
This is the revision day of our book. Of course, this is the last chapter of the book, but this is
just the beginning for you to start exploring more C#-related stuff. On this day, we
developed an application based on the Indian GST system. With the help of this application,
we revisited all that you learned in this seven-day learning series, including attributes,
reflections, C# 7.0 features, and so on.

Index

.

.NET 8

.NET Core
 about 9
 components 10
 features 10
 references 9, 10
.NET Standard
 about 11
 reference 11

A
abstract class
 about 248
 features 248
abstract keyword 32
abstract modifier
 about 123, 124
 rules 125, 126, 127
abstraction
 about 248
 implementing 248
access keywords 31
access modifiers
 about 113, 252
 composite modifier 119, 120
 internal modifier 117, 118
 private modifier 120, 121
 protected modifier 115, 116
 protected modifiers 115
 public modifier 113, 114
 rules 122
additional features, C# 7.1
 about 108
 pattern-matching with generics 108
 reference assemblies 108

aggregation 230
algorithm 7
arithmetic operators 50
ArrayList
 about 174
 declaring 175
 methods 176
 properties 175
 usage 193
arrays
 about 71, 72
 jagged array 75
 multidimensional array 74
 reference 76
 single-dimensional array 74
 types 74
as keyword
 about 32
 reference 32
Assembly.CreateInstance
 reference 163
assignment operators 52
association 230
Async Main
 about 102
 signatures, restrictions 103
async modifier 128
asynchronous code
 reference 226
 writing 225
attributes, types
 about 210
 AttributeUsage 210
 conditional 213
 Obsolete 211
attributes
 usage 210

[275]

 used, for enhancing code 209
AttributeUsage
 about 210
 example 211

B
base class constraint
 example 207
 usage 208
base class members
 bool 33
 break 33
 byte 34
 case 34
 catch 34
 char 34
 checked 34
base keyword
 about 33
 reference 33
Beep method 30
BitArray
 about 190
 usage 194
 versus boolArray 195
bitwise operators 51
boolArray
 versus BitArray 195
boxing 48
break statement 70

C
C# IDEs
 Cloud9 11
 JetBrain Rider 11
 text editor 12
 Visual Studio Code 11
 Zeus IDE 11
C# keywords
 access keywords 31
 class 35
 const 35
 contextual keywords 31
 continue 36
 conversion keywords 31

 decimal 36
 default 36
 delegate 36
 do 36
 double 36
 else 36
 enum 36
 event 36
 explicit 36
 false 36
 finally 36
 fixed 36
 float 36
 for 36
 foreach 36
 goto 37
 if 37
 implicit 37
 in 37
 int 37
 interface 37
 internal 37
 is 37
 literal keywords 31
 lock 38
 long 38
 method parameters 31
 modifiers 31
 namespace 38
 namespace keywords 31
 new 38
 null 38
 object 38
 operator 38
 operator keywords 31
 out 38
 override 38
 params 38
 private 38
 protected 38
 public 38
 query keywords 31
 readonly 38
 ref 38
 return 38

[276]

 sbyte 39
 sealed 39
 short 39
 sizeof 39
 statement keywords 31
 static 39
 string 39
 struct 40
 switch 40
 this 40
 throw 40
 true 40
 try 40
 typeof 40
 types 31
 uint 41
 ulong 41
 unchecked 41
 unsafe 41
 ushort 41
 using 42
 virtual 43
 void 43
 while 43
C# program 18
C#
 about 16
 features 17
 history 17, 18
 multiple inheritance, implementing 245, 246
 operator precedence 55
 operators 50
catch block
 about 150
 compiler-generated exceptions 152
checked keywords
 reference 41
class type 48
class
 about 22
 versus structure 78, 80, 81
cli
 reference 10
Cloud9
 about 11

 reference 11
code refactoring
 reference 141
code
 discussing 28
 enhancing, attributes used 209
collection classes 193
collections
 about 174
 working with 192
color combinations
 demonstrating 29
Command Line Interface (CLI) 12
Common Language Infrastructure (CLI) 17
compile-time polymorphism
 about 255
 function overloading 255
 operator overloading 257
compiler-generated exceptions
 in catch block 152
components, .NET Core
 cli 10
 coreclr 10
 corefx 10
composite modifier 119, 120
composition 230
computed property
 about 144
 block-bodied members 144
 expression-bodied members 144
conditional attribute
 example 213
Console User Interface (CUI) 29
const modifier 128
constant pattern 96
constants
 declaring 105
constraints
 about 203, 204
 base class constraint 207
 default constructor 206
 interface constraint 208
 reference type 205
 value type 205
constructor

[277]

 reference 237
contextual keywords
 about 31
 add 44
 ascending 44
 async 44
 descending 44
 dynamic 44
 from 45
 get 45
 group 45
 into 45
 reference 45
continue statement 70
conversion keywords 31
coreclr
 reference 10
corefx
 reference 10
custom attribute
 creating 214
 implementing 214
 prerequisites 214

D
data annotation
 about 145
 reference 145
data types
 about 45
 null type 50
 pointer type 49
 reference types 48
 value type 46
declarative statement 62
deconstruction 89
default block 71
default constructor constraint
 example 207
 usage 207
default expressions
 about 103
 member variables 105
delegate type
 about 49

 declaring 170
delegates
 about 169
 instances of delegates 171
 using 171
dependencies 24
dequeue 194
destructors
 reference 237
do...while loop 67

E
early binding 255
elements, methods
 access modifier 138
 functioning body 138
 name 138
 parameters 138
 return type 138
encapsulation
 about 252
 implementing 253
 reference 252
enqueue 194
enqueuer 187
entry 22
European Computer Manufacturers Association

(ECMA) 16
event modifier
 about 129
 reference 129
events
 about 172
 declaring 173
exception classes
 reference 152
exception handling
 about 149
 catch block 150
 finally block 151
 try block 150
exception-handling statement 71
exceptions
 user-defined exceptions 152
explicit conversion

[278]

 about 59
 reference 59
expression bodies property
 reference 141
expression statement 62
extern modifier
 about 129
 reference 129

F
File I/O 147
FileStream
 about 148
 reference 148
finalizers
 about 237
 reference 237
finally block 151
First In First Out (FIFO) 194
for loop 68
foreach loop 69
function overloading 255

G
Generic Type Parameter Guidelines
 reference 204
generics
 about 196
 need for 200
 reference 209
 usage 198
 working with 192
GST taxation system
 reference 266
GST-based application
 about 266
 basic architecture 272
 database design 267, 268, 270, 271, 272
 developing 266
 prerequisites 267
 requisites 266

H
HashTable
 about 177

 declaring 177
 methods 179
 properties 178
 usage 193
heap and stack memory allocation
 reference 78
hierarchical inheritance 234
hybrid inheritance 235

I
identifiers
 about 32
 abstract 32
 as 32
 base 33
if statement 63
if...else if...else statement 64
if..else statement 64
implicit conversion 59
implicit inheritance
 about 236
 reference 236
implicitly typed arrays
 reference 76
indexers
 about 146
 reference 147
infer tuple names feature 105
inheritance
 about 231
 hierarchical inheritance 234
 hybrid inheritance 235
 implementing 242, 243
 implicit inheritance 236
 member visibility 237
 multi-level inheritance 234
 multiple inheritance 233
 single inheritance 232
input stream 147
instance constructor 237
Integrated Development Environment (IDE) 11
interface constraint
 example 208
 usage 209
interface type 49

[279]

interface
 about 249
 features 249
 reference 249
Intermediate Language (IL) 9
internal modifier 117, 118, 240
International Standards Organization (ISO) 16
is expression 93, 94, 95
is operator
 reference 94
iteration statement
 about 67
 do...while loop 67
 for loop 68
 foreach loop 69
 while loop 68

J
jagged array 75
JetBrain Rider
 about 11
 reference 11
jump statement
 about 70
 break 70
 continue 70
 default 71

L
Language Integrated Query (LINQ)
 about 222
 reference 223
Last In First Out (LIFO) 194
literal keywords 31
literals, improvements
 about 100
 binary literals 101
 digit separator 101
local functions 99, 100
logical operators 51

M
Main method 22
member visibility
 in inheritance 237

method parameters 31
methods, ArrayList
 Add(object value) 176
 Void Clear() 176
 Void Remove(object obj) 176
 Void Sort() 176
methods, HashTable
 Add(object key, object value) 179
 Void Clear() 179
 Void Remove (object key) 179
methods, queue
 Object Dequeue 188
 Object Peek() 187
 Void Clear() 188
 Void Enqueue (object obj) 188
methods, SortedList
 Add(object key, object value) 182
methods, stack
 Object Peek() 184
 Object Pop() 185
 Void Clear() 185
 Void Push(object obj) 185
methods
 about 137
 elements 138
 using 138
Microsoft Intermediate Language (MSIL) 9
modifiers
 about 31, 113
 abstract modifier 123, 124
 access modifiers 113
 accessibility level 113
 async modifier 128
 const modifier 128
 event modifier 129
 extern modifier 129
 new modifier 130
 override modifier 131
 partial modifier 131
 readonly modifier 131, 133
 sealed modifier 133, 134
 static modifier 135
 unsafe modifier 137
 virtual modifier 137
multi-level inheritance 234

[280]

multidimensional array 74
multiple inheritance
 about 233
 implementing, in C# 245, 246
 reference 233

N
named tuples 91
namespace 21
namespace keywords 31
native code 9
nested if statement 65
nested type
 class 123
 enum 122
 interface 123
 struct 123
new modifier 130
new operator 130
non-generic ArrayList
 drawbacks 201
non-generic collection classes
 ArrayList 193
 BitArray 194
 HashTable 193
 Queue 194
 SortedList 194
 Stack 194
non-generics 174
Notepad++
 reference 12
NuGet package
 reference 85
nullable types
 about 50
 reference 50

O
object relations 230
object-oriented programming (OOP) 228
Obsolete attribute
 about 211
 example 212
operator keywords 31
operator overloading 56, 57, 257

operator precedence
 about 55
 reference 55
operators, C#
 arithmetic operators 50
 assignment operators 52
 bitwise operators 51
 logical operators 51
 relational operators 50
out keyword 31
output stream 147
override modifier 131

P
partial modifier 131
pattern matching
 about 92, 155
 is expression 93, 94, 95
 switch statement 96
pattern-matching, with generics
 reference 108
pointer type 49
polymorphism
 about 255
 compile-time polymorphism 255
 implementing 260
 run-time polymorphism 258
pop operation 194
Portable Class Libraries (PCL) 11
preprocessor directives
 #define 218
 #endregion 219
 #error 221
 #line 220
 #region 219
 #undef 218
 #warning 221
 key points 216
 leveraging 216
 reference 222
 working 216
private members 237
private modifier 120
problem statement
 example 7

[281]

procedural programming 229
Program.cs 26
programming 6
programming approaches
 procedural programming 229
 structured programming 229
programming paradigm
 about 228
 reference 228
project 24
properties, ArrayList
 Capacity 175
 Count 175
 IsFixedSize 175
properties, HashTable
 Count 178
 IsFixedSize 178
 IsReadOnly 178
properties, SortedList
 Capacity 181
 Count 182
 IsFixedSize 182
 IsReadOnly 182
 Void Clear() 182
 Void Remove(object, key) 182
properties
 about 141
 computed property 144
 read-only property 143
 read-write property 142
 types 142
 with validation 145
property, queue
 Count 187
property, stack
 Count 184
protected members 239
protected modifier 115, 116
public members 241
public modifier 113, 114
push operation 194

Q
query keywords 31
queue

 about 187
 declaring 187
 methods 187
 properties 187
 usage 194

R
read-only property 143
read-write property 142
readonly modifier 131, 132
ref keyword 31
reference type constraint
 example 206
 usage 206
reference types
 about 48
 class type 48
reflection
 about 160, 161, 162
 type info, obtaining 164, 165
 using 164
regular expressions
 about 154
 constructs 155
 features 155
 number of matches, specifying 156
 special characters 155
relational operators 50
relationships, in object-oriented
 aggregation 230
 association 230
 composition 230
release, Visual Studio 2017
 reference 101
roslyn
 reference 10
rules, abstract modifier
 implementation nature 126
 instantiation 125
 limit-inherit nature 126
 non-abstract 125
 virtual in nature 127
rules, access modifier
 combination restriction 122
 default accessibility restriction 122

[282]

 namespace restriction 122
 nested-type restriction 122
 top-level type restriction 122
rules, static modifier
 availability 136
 complete static 136
 nature by static 135
 restriction 135
run-time polymorphism 258
RyuJIT
 reference 9

S
sealed modifier 133, 134
selection statement
 about 63
 exception-handling statement 71
 if statement 63
 iteration statement 67
 jump statement 70
simple C# program
 class 22
 dependencies 25
 Main method 22
 namespace 21
 Program.cs 26
 project 24
 solution 23
 starting 19
 system 21
single inheritance 232
single-dimensional array 74
solution 23
SortedList
 about 180
 declaring 180
 methods 182
 properties 181
 usage 194
special characters, regular expressions
 digit sign (d) 155
 hyphen sign (-) 156
 period sign (.) 155
 space sign (s) 155
 word sign (w) 155

stack
 about 184
 declaring 184
 methods 184
 properties 184
 usage 194
statement keywords 31
statements
 about 60
 declarative statement 62
 expression statement 62
 reference 61
 selection statement 63
static constructor 237
static modifier
 about 135
 rules 135
String calculator
 reference 112
string methods
 reference 77
string type 49
strings
 about 76
 reference 77
structured programming 229
structures
 reference 81
 versus class 78, 80, 81
switch statement
 about 66, 96
 constant pattern 96
 type pattern 98
 when clause in case expression 98
system 21
System.Collections.NonGeneric
 reference 174
System.Collections
 reference 199
System.IO classes
 reference 147
System.Reflection.TypeExtensions class
 methods 167
 reference 167
System.Type class 164

System.ValueTuple struct
 about 86
 CompareTo(ValueTuple) 86
 Create() 89
 Equals(Object) 87, 88
 Equals(ValueTuple) 88
 GetHashCode() 89
 GetType() 89
 ToString() 89

T
text editor 12
try block 150
tuples
 about 84
 deconstructing 90
 named tuples 91
 System.ValueTuple struct 86
 unnamed tuples 91
 using 85, 86
type conversion
 about 59
 explicit conversion 59
 implicit conversion 59
type pattern 98
types 31

U
unboxing 48
unchecked keywords
 reference 41
unnamed tuples 91

unsafe code
 reference 225
 writing 223, 224
unsafe modifier 137
user-defined exception 152

V
value type 46
value type constraint
 example 205
 usage 205
value types 46
virtual modifier 137
Visual Studio 2017
 installing, on Windows 10 12, 13, 14
 reference 18
Visual Studio Code
 about 11
 reference 11
Visual Studio Community
 download link 12
Visual Studio
 console application 26

W
when clause in case expression 98
while loop 68

Z
Zeus IDE
 about 11
 reference 11

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Day 01 - Overview of the .NET Framework
	What is programming?
	What is .NET?
	What is .NET Core?
	.NET Core features
	What makes .NET Core?
	What is .NET Standard?
	Available IDEs and editors for C#
	Setting up the environment

	Hands - on exercises
	Revisiting Day 01

	Chapter 2: Day 02 - Getting Started with C#
	Introduction to C#
	History of the C# language

	Understanding a typical C# program
	1 (System)
	3 (Day02)
	2 (Program)
	4 (Main)
	5 (Day02)
	6 (Day02)
	7 (Dependencies)
	8 (Program.cs)
	Deep-dive into application using Visual Studio
	Discussing code
	Color
	Beep

	An overview of C# reserved keywords, types, and operators
	Identifiers
	Contextual
	Types
	Value type
	Data types

	Reference type
	Pointer type
	Null type

	Operators
	Discussing operator precedence in C#
	Operator overloading

	An overview of type conversion
	Implicit conversion
	Explicit conversion

	Understanding statements
	Declarative statement
	Expression statement
	Selection statement
	The if statement
	The if..else statement
	if...else if...else statement
	Nested if statement
	Switch statement

	Iteration statement
	The do...while loop
	The while loop
	The for loop
	The foreach loop

	The jump statement
	break
	continue
	default

	Exception-handling statement

	Arrays and string manipulations
	Arrays
	Types of arrays
	Single-dimensional array
	Multidimensional array
	Jagged array

	Strings

	Structure versus class
	Hands-on exercise
	Revisiting day 2

	Chapter 3: Day 03 - What's New in C#
	Tuples and deconstruction
	Tuples
	The System.ValueTuple struct

	Deconstruction
	Tuple – important points to remember

	Pattern matching
	is expression
	switch statement
	constant pattern
	type pattern
	When clause in case expression

	Local functions
	Literal improvements
	Binary literals
	Digit separator

	Async Main
	Restrictions while using new signatures

	Default expressions
	Member variables
	Constants

	Infer tuple names
	Other features supposed to release
	Pattern-matching with generics
	Reference assemblies

	Hands-on exercises
	Revisiting Day 03

	Chapter 4: Day 04 - Discussing C# Class Members
	Modifiers
	Access modifiers and accessibility levels
	public
	protected
	internal
	composite
	private

	Rules for the access modifier
	abstract
	Rules of the abstract modifier

	async
	const
	event
	extern
	new
	override
	partial
	readonly
	sealed
	static
	Rules for the static modifier

	unsafe
	virtual

	Methods
	How to use a method?

	Properties
	Types of properties
	Read-write property
	Read-only property
	Computed property
	Block-bodied members
	Expression-bodied members

	Property using validation

	Indexers
	File I/O
	FileStream

	Exception handling
	try block
	catch block
	finally block
	Different compiler-generated exceptions in catch block

	User-defined exceptions

	Discussing a regular expression and its importance
	The Importance of a regular expression
	Flexible
	Constructs
	Special characters
	The period sign (.)
	The word sign (w)
	The space sign (s)
	The digit sign (d)
	The hyphen sign (-)
	Specifying the number of matches

	Hands-on exercise
	Revisiting Day 04

	Chapter 5: Day 05 - Overview of Reflection and Collections
	What is reflection?
	Reflection in use
	Getting type info

	Overview of delegates and events
	Delegates
	Declaring a delegate type
	Instances of delegate
	Delegates in use

	Events
	Declaring an event

	Collections and non-generics
	ArrayList
	Declaration of ArrayList
	Properties
	Methods

	HashTable
	Declaration of HashTable
	Properties
	Methods

	SortedList
	Declaration of SortedList
	Properties
	Methods

	Stack
	Declaration of Stack
	Properties
	Methods

	Queue
	Declaration of Queue
	Properties
	Methods

	BitArray

	Hands - on exercise
	Revisiting Day 05

	Chapter 6: Day 06 - Deep Dive with Advanced Concepts
	Playing with collections and generics
	Understanding collection classes and their usage
	Performance - BitArray versus boolArray
	Understanding generics and their usage
	Collections and generics
	Why should we use generics?
	Discussing constraints
	The value type
	The reference type
	The default constructor
	The base class constraint
	The interface constraint

	Beautifying code using attributes
	Types of attributes
	AttributeUsage
	Obsolete
	Conditional

	Creating and implementing a custom attribute
	Prerequisites

	Leveraging preprocessor directives
	Important points
	Preprocessor directives in action

	Getting started with LINQ
	Writing unsafe code
	Writing asynchronous code
	Hands-on exercises
	Revisiting Day 6

	Chapter 7: Day 07 - Understanding Object-Oriented Programming with C#
	Introduction to OOP
	Discussing Object relations
	Inheritance
	Understanding inheritance
	Types of inheritance
	Member visibility in inheritance

	Implementing inheritance
	Implementing multiple inheritance in C#

	Abstraction
	Implementing abstraction
	Abstract class
	Features of abstract class

	Interface
	Features of interface

	Encapsulation
	What are access modifier in C#?
	Implementing encapsulation

	Polymorphism
	Types of polymorphism
	Implementing polymorphism

	Hands on Exercise
	Revisiting Day 7
	What next?

	Chapter 8: Day 08 - Test Your Skills – Build a Real-World Application
	Why are we developing this application?
	Getting started with application development
	Prerequisites
	The database design
	Overview

	Discussing the basic architecture
	Revisiting day 08

	Index

